/** ****************************************************************************** * @file py32f0xx_hal_rcc.h * @author MCU Application Team * @brief Header file of RCC HAL module. ****************************************************************************** * @attention * *

© Copyright (c) 2023 Puya Semiconductor Co. * All rights reserved.

* * This software component is licensed by Puya under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** * @attention * *

© Copyright (c) 2016 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __PY32F0xx_HAL_RCC_H #define __PY32F0xx_HAL_RCC_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "py32f0xx_hal_def.h" /** @addtogroup PY32F0xx_HAL_Driver * @{ */ /** @addtogroup RCC * @{ */ /* Private constants ---------------------------------------------------------*/ /** @addtogroup RCC_Private_Constants * @{ */ /* Defines used for Flags */ #define CR_REG_INDEX 1U #define BDCR_REG_INDEX 2U #define CSR_REG_INDEX 3U #define RCC_FLAG_MASK 0x1FU /* Define used for IS_RCC_CLOCKTYPE() */ #define RCC_CLOCKTYPE_ALL (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1) /*!< All clocktype to configure */ /** * @} */ /* Private macros ------------------------------------------------------------*/ /** @addtogroup RCC_Private_Macros * @{ */ #if (defined(PY32F003PRE) || defined(PY32F002APRE)) #define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) (((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)) #else #define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) (((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || \ (((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)) #endif #define IS_RCC_HSE(__HSE__) (((__HSE__) == RCC_HSE_OFF) || ((__HSE__) == RCC_HSE_ON) || \ ((__HSE__) == RCC_HSE_BYPASS)) #if defined(PY32F002APRE) #define IS_RCC_HSE_FREQ(__FREQ__) (((__FREQ__) == RCC_HSE_4_8MHz) || ((__FREQ__) == RCC_HSE_8_16MHz) || \ ((__FREQ__) == RCC_HSE_16_24MHz)) #else #define IS_RCC_HSE_FREQ(__FREQ__) (((__FREQ__) == RCC_HSE_4_8MHz) || ((__FREQ__) == RCC_HSE_8_16MHz) || \ ((__FREQ__) == RCC_HSE_16_32MHz)) #endif #if defined(RCC_LSE_SUPPORT) #define IS_RCC_LSE(__LSE__) (((__LSE__) == RCC_LSE_OFF) || ((__LSE__) == RCC_LSE_ON) || \ ((__LSE__) == RCC_LSE_BYPASS)) #endif #define IS_RCC_HSI(__HSI__) (((__HSI__) == RCC_HSI_OFF) || ((__HSI__) == RCC_HSI_ON)) #if defined(PY32F002APRE) #define IS_RCC_HSI_CALIBRATION_VALUE(__VALUE__) ((__VALUE__) == RCC_HSICALIBRATION_8MHz || \ (__VALUE__) == RCC_HSICALIBRATION_24MHz) #else #define IS_RCC_HSI_CALIBRATION_VALUE(__VALUE__) (((__VALUE__) == RCC_HSICALIBRATION_4MHz) || \ ((__VALUE__) == RCC_HSICALIBRATION_8MHz) || \ ((__VALUE__) == RCC_HSICALIBRATION_16MHz) || \ ((__VALUE__) == RCC_HSICALIBRATION_22p12MHz) || \ ((__VALUE__) == RCC_HSICALIBRATION_24MHz)) #endif #define IS_RCC_HSIDIV(__DIV__) (((__DIV__) == RCC_HSI_DIV1) || ((__DIV__) == RCC_HSI_DIV2) || \ ((__DIV__) == RCC_HSI_DIV4) || ((__DIV__) == RCC_HSI_DIV8) || \ ((__DIV__) == RCC_HSI_DIV16) || ((__DIV__) == RCC_HSI_DIV32)|| \ ((__DIV__) == RCC_HSI_DIV64) || ((__DIV__) == RCC_HSI_DIV128)) #define IS_RCC_LSI(__LSI__) (((__LSI__) == RCC_LSI_OFF) || ((__LSI__) == RCC_LSI_ON)) #if defined(RCC_PLL_SUPPORT) #define IS_RCC_PLL(__PLL__) (((__PLL__) == RCC_PLL_NONE) ||((__PLL__) == RCC_PLL_OFF) || \ ((__PLL__) == RCC_PLL_ON)) #define IS_RCC_PLLSOURCE(__SOURCE__) (((__SOURCE__) == RCC_PLLSOURCE_HSI) || \ ((__SOURCE__) == RCC_PLLSOURCE_HSE)) #endif #define IS_RCC_CLOCKTYPE(__CLK__) ((((__CLK__) & RCC_CLOCKTYPE_ALL) != 0x00UL) && (((__CLK__) & ~RCC_CLOCKTYPE_ALL) == 0x00UL)) #if (defined(PY32F003PRE) || defined(PY32F002APRE)) #define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || \ ((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \ ((__SOURCE__) == RCC_SYSCLKSOURCE_LSI)) #else #define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || \ ((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \ ((__SOURCE__) == RCC_SYSCLKSOURCE_LSE) || \ ((__SOURCE__) == RCC_SYSCLKSOURCE_LSI) || \ ((__SOURCE__) == RCC_SYSCLKSOURCE_PLLCLK)) #endif #define IS_RCC_HCLK(__HCLK__) (((__HCLK__) == RCC_SYSCLK_DIV1) || ((__HCLK__) == RCC_SYSCLK_DIV2) || \ ((__HCLK__) == RCC_SYSCLK_DIV4) || ((__HCLK__) == RCC_SYSCLK_DIV8) || \ ((__HCLK__) == RCC_SYSCLK_DIV16) || ((__HCLK__) == RCC_SYSCLK_DIV64) || \ ((__HCLK__) == RCC_SYSCLK_DIV128) || ((__HCLK__) == RCC_SYSCLK_DIV256) || \ ((__HCLK__) == RCC_SYSCLK_DIV512)) #define IS_RCC_PCLK(__PCLK__) (((__PCLK__) == RCC_HCLK_DIV1) || ((__PCLK__) == RCC_HCLK_DIV2) || \ ((__PCLK__) == RCC_HCLK_DIV4) || ((__PCLK__) == RCC_HCLK_DIV8) || \ ((__PCLK__) == RCC_HCLK_DIV16)) #if defined(RCC_LSE_SUPPORT) #define IS_RCC_RTCCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_RTCCLKSOURCE_NONE) || \ ((__SOURCE__) == RCC_RTCCLKSOURCE_LSE) || \ ((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || \ ((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV128)) #else #define IS_RCC_RTCCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_RTCCLKSOURCE_NONE) || \ ((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || \ ((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV128)) #endif #define IS_RCC_MCO(__MCOX__) ((__MCOX__) == RCC_MCO1) #if (defined(PY32F003PRE) || defined(PY32F002APRE)) #define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \ ((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \ ((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \ ((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \ ((__SOURCE__) == RCC_MCO1SOURCE_LSI)) #else #define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \ ((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \ ((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \ ((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \ ((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) || \ ((__SOURCE__) == RCC_MCO1SOURCE_LSI) || \ ((__SOURCE__) == RCC_MCO1SOURCE_LSE)) #endif #define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1) || ((__DIV__) == RCC_MCODIV_2) || \ ((__DIV__) == RCC_MCODIV_4) || ((__DIV__) == RCC_MCODIV_8) || \ ((__DIV__) == RCC_MCODIV_16)|| ((__DIV__) == RCC_MCODIV_32) || \ ((__DIV__) == RCC_MCODIV_64)|| ((__DIV__) == RCC_MCODIV_128)) #if defined(RCC_LSE_SUPPORT) #define IS_RCC_LSE_DRIVE(__DRIVE__) (((__DRIVE__) == RCC_LSEDRIVE_LOW) || \ ((__DRIVE__) == RCC_LSEDRIVE_MEDIUM) || \ ((__DRIVE__) == RCC_LSEDRIVE_HIGH)) #endif /** * @} */ /* Exported types ------------------------------------------------------------*/ /** @defgroup RCC_Exported_Types RCC Exported Types * @{ */ #if defined(RCC_PLL_SUPPORT) /** * @brief RCC PLL configuration structure definition */ typedef struct { uint32_t PLLState; /*!< The new state of the PLL. This parameter can be a value of @ref RCC_PLL_Config */ uint32_t PLLSource; /*!< RCC_PLLSource: PLL entry clock source. This parameter must be a value of @ref RCC_PLL_Clock_Source */ } RCC_PLLInitTypeDef; #endif /** * @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition */ typedef struct { uint32_t OscillatorType; /*!< The oscillators to be configured. This parameter can be a value of @ref RCC_Oscillator_Type */ uint32_t HSEState; /*!< The new state of the HSE. This parameter can be a value of @ref RCC_HSE_Config */ uint32_t HSEFreq; /*!< The frequency range of the HSE. This parameter can be a value of @ref RCC_HSE_Freq */ #if defined(RCC_LSE_SUPPORT) uint32_t LSEState; /*!< The new state of the LSE. This parameter can be a value of @ref RCC_LSE_Config */ uint32_t LSEDriver; /*!< The driver factor of the LSE. This parameter can be a value of @ref RCC_LSE_Driver */ #endif uint32_t HSIState; /*!< The new state of the HSI. This parameter can be a value of @ref RCC_HSI_Config */ uint32_t HSIDiv; /*!< The division factor of the HSI. This parameter can be a value of @ref RCC_HSI_Div */ uint32_t HSICalibrationValue; /*!< The calibration trimming value (default is RCC_HSICALIBRATION_8MHz). This parameter can be a value of @ref RCC_HSI_Calibration */ uint32_t LSIState; /*!< The new state of the LSI. This parameter can be a value of @ref RCC_LSI_Config */ #if defined(RCC_PLL_SUPPORT) RCC_PLLInitTypeDef PLL; /*!< Main PLL structure parameters */ #endif } RCC_OscInitTypeDef; /** * @brief RCC System, AHB and APB busses clock configuration structure definition */ typedef struct { uint32_t ClockType; /*!< The clock to be configured. This parameter can be a combination of @ref RCC_System_Clock_Type */ uint32_t SYSCLKSource; /*!< The clock source used as system clock (SYSCLK). This parameter can be a value of @ref RCC_System_Clock_Source */ uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK). This parameter can be a value of @ref RCC_AHB_Clock_Source */ uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK). This parameter can be a value of @ref RCC_APB1_Clock_Source */ } RCC_ClkInitTypeDef; /** * @} */ /* Exported constants --------------------------------------------------------*/ /** @defgroup RCC_Exported_Constants RCC Exported Constants * @{ */ /** @defgroup RCC_Timeout_Value Timeout Values * @{ */ #define RCC_DBP_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */ #if defined(RCC_LSE_SUPPORT) #define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT /* LSE timeout in ms */ #endif /** * @} */ /** @defgroup RCC_Oscillator_Type Oscillator Type * @{ */ #define RCC_OSCILLATORTYPE_NONE 0x00000000U /*!< Oscillator configuration unchanged */ #define RCC_OSCILLATORTYPE_HSE 0x00000001U /*!< HSE to configure */ #define RCC_OSCILLATORTYPE_HSI 0x00000002U /*!< HSI to configure */ #if defined(RCC_LSE_SUPPORT) #define RCC_OSCILLATORTYPE_LSE 0x00000004U /*!< LSE to configure */ #endif #define RCC_OSCILLATORTYPE_LSI 0x00000008U /*!< LSI to configure */ /** * @} */ /** @defgroup RCC_HSE_Config HSE Config * @{ */ #define RCC_HSE_OFF 0x00000000U /*!< HSE clock deactivation */ #define RCC_HSE_ON RCC_CR_HSEON /*!< HSE clock activation */ #define RCC_HSE_BYPASS ((uint32_t)(RCC_CR_HSEBYP | RCC_CR_HSEON)) /*!< External clock source for HSE clock */ /** * @} */ /** @defgroup RCC_HSE_Freq HSE Config * @{ */ #define RCC_HSE_4_8MHz RCC_ECSCR_HSE_FREQ_0 #define RCC_HSE_8_16MHz RCC_ECSCR_HSE_FREQ_1 #if defined(PY32F002APRE) #define RCC_HSE_16_24MHz (RCC_ECSCR_HSE_FREQ_0 | RCC_ECSCR_HSE_FREQ_1) #else #define RCC_HSE_16_32MHz (RCC_ECSCR_HSE_FREQ_0 | RCC_ECSCR_HSE_FREQ_1) #endif /** * @} */ #if defined(RCC_LSE_SUPPORT) /** @defgroup RCC_LSE_Config LSE Config * @{ */ #define RCC_LSE_OFF 0x00000000U /*!< LSE clock deactivation */ #define RCC_LSE_ON RCC_BDCR_LSEON /*!< LSE clock activation */ #define RCC_LSE_BYPASS ((uint32_t)(RCC_BDCR_LSEBYP | RCC_BDCR_LSEON)) /*!< External clock source for LSE clock */ /** * @} */ /** @defgroup RCC_LSE_Driver LSE Config * @{ */ #define RCC_LSEDRIVE_LOW RCC_ECSCR_LSE_DRIVER_0 /*!< LSE low drive capability */ #define RCC_LSEDRIVE_MEDIUM RCC_ECSCR_LSE_DRIVER_1 /*!< LSE medium drive capability */ #define RCC_LSEDRIVE_HIGH (RCC_ECSCR_LSE_DRIVER_0 | RCC_ECSCR_LSE_DRIVER_1) /*!< LSE high drive capability */ /** * @} */ #endif /** @defgroup RCC_HSI_Config HSI Config * @{ */ #define RCC_HSI_OFF 0x00000000U /*!< HSI clock deactivation */ #define RCC_HSI_ON RCC_CR_HSION /*!< HSI clock activation */ /** * @} */ /** @defgroup RCC_HSI_Calibration HSI Calibration * @{ */ #if defined(PY32F002APRE) #define RCC_HSICALIBRATION_8MHz ((0x1<<13) | ((*(uint32_t *)(0x1FFF0F04)) & 0x1FFF)) /*!< 8MHz HSI calibration trimming value */ #define RCC_HSICALIBRATION_24MHz ((0x4<<13) | ((*(uint32_t *)(0x1FFF0F10)) & 0x1FFF)) /*!< 24MHz HSI calibration trimming value */ #else #define RCC_HSICALIBRATION_4MHz ((0x0<<13) | ((*(uint32_t *)(0x1FFF0F00)) & 0x1FFF)) /*!< 4MHz HSI calibration trimming value */ #define RCC_HSICALIBRATION_8MHz ((0x1<<13) | ((*(uint32_t *)(0x1FFF0F04)) & 0x1FFF)) /*!< 8MHz HSI calibration trimming value */ #define RCC_HSICALIBRATION_16MHz ((0x2<<13) | ((*(uint32_t *)(0x1FFF0F08)) & 0x1FFF)) /*!< 16MHz HSI calibration trimming value */ #define RCC_HSICALIBRATION_22p12MHz ((0x3<<13) | ((*(uint32_t *)(0x1FFF0F0C)) & 0x1FFF)) /*!< 22.12MHz HSI calibration trimming value */ #define RCC_HSICALIBRATION_24MHz ((0x4<<13) | ((*(uint32_t *)(0x1FFF0F10)) & 0x1FFF)) /*!< 24MHz HSI calibration trimming value */ #endif /** * @} */ /** @defgroup RCC_HSI_Div HSI Div * @{ */ #define RCC_HSI_DIV1 0x00000000U /*!< HSI clock is not divided */ #define RCC_HSI_DIV2 RCC_CR_HSIDIV_0 /*!< HSI clock is divided by 2 */ #define RCC_HSI_DIV4 RCC_CR_HSIDIV_1 /*!< HSI clock is divided by 4 */ #define RCC_HSI_DIV8 (RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 8 */ #define RCC_HSI_DIV16 RCC_CR_HSIDIV_2 /*!< HSI clock is divided by 16 */ #define RCC_HSI_DIV32 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 32 */ #define RCC_HSI_DIV64 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1) /*!< HSI clock is divided by 64 */ #define RCC_HSI_DIV128 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 128 */ /** * @} */ /** @defgroup RCC_LSI_Config LSI Config * @{ */ #define RCC_LSI_OFF 0x00000000U /*!< LSI clock deactivation */ #define RCC_LSI_ON RCC_CSR_LSION /*!< LSI clock activation */ /** * @} */ #if defined(RCC_PLL_SUPPORT) /** @defgroup RCC_PLL_Config PLL Config * @{ */ #define RCC_PLL_NONE 0x00000000U /*!< PLL configuration unchanged */ #define RCC_PLL_OFF 0x00000001U /*!< PLL deactivation */ #define RCC_PLL_ON 0x00000002U /*!< PLL activation */ /** * @} */ /** @defgroup RCC_PLL_Clock_Source PLL Clock Source * @{ */ #define RCC_PLLSOURCE_HSI RCC_PLLCFGR_PLLSRC_HSI /*!< HSI clock selected as PLL entry clock source */ #define RCC_PLLSOURCE_HSE RCC_PLLCFGR_PLLSRC_HSE /*!< HSE clock selected as PLL entry clock source */ /** * @} */ #endif /** @defgroup RCC_System_Clock_Type System Clock Type * @{ */ #define RCC_CLOCKTYPE_SYSCLK 0x00000001U /*!< SYSCLK to configure */ #define RCC_CLOCKTYPE_HCLK 0x00000002U /*!< HCLK to configure */ #define RCC_CLOCKTYPE_PCLK1 0x00000004U /*!< PCLK1 to configure */ /** * @} */ /** @defgroup RCC_System_Clock_Source System Clock Source * @{ */ #define RCC_SYSCLKSOURCE_HSI 0x00000000U /*!< HSI selection as system clock */ #define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_0 /*!< HSE selection as system clock */ #if defined(RCC_PLL_SUPPORT) #define RCC_SYSCLKSOURCE_PLLCLK RCC_CFGR_SW_1 /*!< PLL selection as system clock */ #endif #define RCC_SYSCLKSOURCE_LSI (RCC_CFGR_SW_1 | RCC_CFGR_SW_0) /*!< LSI selection as system clock */ #if defined(RCC_LSE_SUPPORT) #define RCC_SYSCLKSOURCE_LSE RCC_CFGR_SW_2 /*!< LSE selection as system clock */ #endif /** * @} */ /** @defgroup RCC_System_Clock_Source_Status System Clock Source Status * @{ */ #define RCC_SYSCLKSOURCE_STATUS_HSI 0x00000000U /*!< HSI used as system clock */ #define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_0 /*!< HSE used as system clock */ #if defined(RCC_PLL_SUPPORT) #define RCC_SYSCLKSOURCE_STATUS_PLLCLK RCC_CFGR_SWS_1 /*!< PLL used as system clock */ #endif #define RCC_SYSCLKSOURCE_STATUS_LSI (RCC_CFGR_SWS_1 | RCC_CFGR_SWS_0) /*!< LSI used as system clock */ #if defined(RCC_LSE_SUPPORT) #define RCC_SYSCLKSOURCE_STATUS_LSE RCC_CFGR_SWS_2 /*!< LSE used as system clock */ #endif /** * @} */ /** @defgroup RCC_AHB_Clock_Source AHB Clock Source * @{ */ #define RCC_SYSCLK_DIV1 0x00000000U /*!< SYSCLK not divided */ #define RCC_SYSCLK_DIV2 RCC_CFGR_HPRE_3 /*!< SYSCLK divided by 2 */ #define RCC_SYSCLK_DIV4 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 4 */ #define RCC_SYSCLK_DIV8 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 8 */ #define RCC_SYSCLK_DIV16 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 16 */ #define RCC_SYSCLK_DIV64 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2) /*!< SYSCLK divided by 64 */ #define RCC_SYSCLK_DIV128 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 128 */ #define RCC_SYSCLK_DIV256 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 256 */ #define RCC_SYSCLK_DIV512 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 512 */ /** * @} */ /** @defgroup RCC_APB1_Clock_Source APB Clock Source * @{ */ #define RCC_HCLK_DIV1 0x00000000U /*!< HCLK not divided */ #define RCC_HCLK_DIV2 RCC_CFGR_PPRE_2 /*!< HCLK divided by 2 */ #define RCC_HCLK_DIV4 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 4 */ #define RCC_HCLK_DIV8 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1) /*!< HCLK divided by 8 */ #define RCC_HCLK_DIV16 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 16 */ /** * @} */ #if defined(RCC_BDCR_RTCSEL) /** @defgroup RCC_RTC_Clock_Source RTC Clock Source * @{ */ #define RCC_RTCCLKSOURCE_NONE 0x00000000U /*!< No clock configured for RTC */ #if defined(RCC_LSE_SUPPORT) #define RCC_RTCCLKSOURCE_LSE RCC_BDCR_RTCSEL_0 /*!< LSE oscillator clock used as RTC clock */ #endif #define RCC_RTCCLKSOURCE_LSI RCC_BDCR_RTCSEL_1 /*!< LSI oscillator clock used as RTC clock */ #define RCC_RTCCLKSOURCE_HSE_DIV128 RCC_BDCR_RTCSEL /*!< HSE oscillator clock divided by 128 used as RTC clock */ /** * @} */ #endif /** @defgroup RCC_MCO_Index MCO Index * @{ */ #define RCC_MCO 0x00000000U #define RCC_MCO1 RCC_MCO /*!< PA08 MCO1 to be compliant with other families with 2 MCOs*/ #define RCC_MCO2 0x00000001U /*!< Configure PA01 as the clock output. */ #define RCC_MCO3 0x00000002U /*!< Configure PA05 as the clock output. */ #define RCC_MCO4 0x00000003U /*!< Configure PA09 as the clock output. */ #define RCC_MCO5 0x00000004U /*!< Configure PA13 as the clock output.Note:PA13 is SWD_SWDIO Pin */ #define RCC_MCO6 0x00000005U /*!< Configure PA14 as the clock output.Note:PA14 is SWD_SWCLK Pin */ #define RCC_MCO7 0x00000006U /*!< Configure PF02 as the clock output.Note:Defaults to the reset pin, Optionbyte needs to be configured */ /** * @} */ /** @defgroup RCC_MCO1_Clock_Source MCO1 Clock Source * @{ */ #define RCC_MCO1SOURCE_NOCLOCK 0x00000000U /*!< MCO1 output disabled, no clock on MCO1 */ #define RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_0 /*!< SYSCLK selection as MCO1 source */ #define RCC_MCO1SOURCE_HSI10M RCC_CFGR_MCOSEL_1 #define RCC_MCO1SOURCE_HSI (RCC_CFGR_MCOSEL_0| RCC_CFGR_MCOSEL_1) /*!< HSI selection as MCO1 source */ #define RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_2 /*!< HSE selection as MCO1 source */ #if defined(RCC_PLL_SUPPORT) #define RCC_MCO1SOURCE_PLLCLK (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_2) /*!< PLLCLK selection as MCO1 source */ #endif #define RCC_MCO1SOURCE_LSI (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSI selection as MCO1 source */ #if defined(RCC_LSE_SUPPORT) #define RCC_MCO1SOURCE_LSE (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSE selection as MCO1 source */ #endif /** * @} */ /** @defgroup RCC_MCOx_Clock_Prescaler MCO1 Clock Prescaler * @{ */ #define RCC_MCODIV_1 0x00000000U /*!< MCO not divided */ #define RCC_MCODIV_2 RCC_CFGR_MCOPRE_0 /*!< MCO divided by 2 */ #define RCC_MCODIV_4 RCC_CFGR_MCOPRE_1 /*!< MCO divided by 4 */ #define RCC_MCODIV_8 (RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 8 */ #define RCC_MCODIV_16 RCC_CFGR_MCOPRE_2 /*!< MCO divided by 16 */ #define RCC_MCODIV_32 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 32 */ #define RCC_MCODIV_64 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1) /*!< MCO divided by 64 */ #define RCC_MCODIV_128 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 128 */ /** * @} */ /** @defgroup RCC_Interrupt Interrupts * @{ */ #define RCC_IT_LSIRDY RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */ #if defined(RCC_LSE_SUPPORT) #define RCC_IT_LSERDY RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */ #define RCC_IT_LSECSS RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */ #endif #define RCC_IT_HSIRDY RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */ #define RCC_IT_HSERDY RCC_CIFR_HSERDYF /*!< HSE Ready Interrupt flag */ #if defined(RCC_PLL_SUPPORT) #define RCC_IT_PLLRDY RCC_CIFR_PLLRDYF /*!< PLL Ready Interrupt flag */ #endif #define RCC_IT_CSS RCC_CIFR_CSSF /*!< HSE Clock Security System Interrupt flag */ /** * @} */ /** @defgroup RCC_Flag Flags * Elements values convention: XXXYYYYYb * - YYYYY : Flag position in the register * - XXX : Register index * - 001: CR register * - 010: BDCR register * - 011: CSR register * @{ */ /* Flags in the CR register */ #define RCC_FLAG_HSIRDY ((CR_REG_INDEX << 5U) | RCC_CR_HSIRDY_Pos) /*!< HSI Ready flag */ #define RCC_FLAG_HSERDY ((CR_REG_INDEX << 5U) | RCC_CR_HSERDY_Pos) /*!< HSE Ready flag */ #if defined(RCC_PLL_SUPPORT) #define RCC_FLAG_PLLRDY ((CR_REG_INDEX << 5U) | RCC_CR_PLLRDY_Pos) /*!< PLL Ready flag */ #endif #if defined(RCC_LSE_SUPPORT) /* Flags in the BDCR register */ #define RCC_FLAG_LSERDY ((BDCR_REG_INDEX << 5U) | RCC_BDCR_LSERDY_Pos) /*!< LSE Ready flag */ #endif /* Flags in the CSR register */ #define RCC_FLAG_LSIRDY ((CSR_REG_INDEX << 5U) | RCC_CSR_LSIRDY_Pos) /*!< LSI Ready flag */ #define RCC_FLAG_OBLRST ((CSR_REG_INDEX << 5U) | RCC_CSR_OBLRSTF_Pos) /*!< Option Byte Loader reset flag */ #define RCC_FLAG_PINRST ((CSR_REG_INDEX << 5U) | RCC_CSR_PINRSTF_Pos) /*!< PIN reset flag */ #define RCC_FLAG_PWRRST ((CSR_REG_INDEX << 5U) | RCC_CSR_PWRRSTF_Pos) /*!< BOR or POR/PDR reset flag */ #define RCC_FLAG_SFTRST ((CSR_REG_INDEX << 5U) | RCC_CSR_SFTRSTF_Pos) /*!< Software Reset flag */ #define RCC_FLAG_IWDGRST ((CSR_REG_INDEX << 5U) | RCC_CSR_IWDGRSTF_Pos) /*!< Independent Watchdog reset flag */ #if defined(WWDG) #define RCC_FLAG_WWDGRST ((CSR_REG_INDEX << 5U) | RCC_CSR_WWDGRSTF_Pos) /*!< Window watchdog reset flag */ #endif /** * @} */ /** * @} */ /* Exported macros -----------------------------------------------------------*/ /** @defgroup RCC_Exported_Macros RCC Exported Macros * @{ */ /** @defgroup RCC_AHB_Peripheral_Clock_Enable_Disable AHB Peripheral Clock Enable Disable * @brief Enable or disable the AHB peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #if (defined(DMA) || defined(DMA1)) #define __HAL_RCC_DMA_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN); \ UNUSED(tmpreg); \ } while(0U) #endif #define __HAL_RCC_FLASH_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_SRAM_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_CRC_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \ UNUSED(tmpreg); \ } while(0U) #if (defined(DMA) || defined(DMA1)) #define __HAL_RCC_DMA_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN) #endif #define __HAL_RCC_FLASH_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) #define __HAL_RCC_SRAM_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN) #define __HAL_RCC_CRC_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) /** * @} */ /** @defgroup RCC_IOPORT_Clock_Enable_Disable IOPORT Clock Enable Disable * @brief Enable or disable the IO Ports clock. * @note After reset, the IO ports clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_GPIOA_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_GPIOB_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_GPIOF_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_GPIOA_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) #define __HAL_RCC_GPIOB_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) #define __HAL_RCC_GPIOF_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN) /** * @} */ /** @defgroup RCC_APB1_Clock_Enable_Disable APB1 Peripheral Clock Enable Disable * @brief Enable or disable the APB1 peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #if defined(TIM3) #define __HAL_RCC_TIM3_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN); \ UNUSED(tmpreg); \ } while(0U) #endif #if defined(RTC) #define __HAL_RCC_RTCAPB_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN); \ UNUSED(tmpreg); \ } while(0U) #endif #if defined(WWDG) #define __HAL_RCC_WWDG_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN); \ UNUSED(tmpreg); \ } while(0U) #endif #if defined(SPI2) #define __HAL_RCC_SPI2_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN); \ UNUSED(tmpreg); \ } while(0U) #endif #if defined(USART2) #define __HAL_RCC_USART2_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN); \ UNUSED(tmpreg); \ } while(0U) #endif #define __HAL_RCC_I2C_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_DBGMCU_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_PWR_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_LPTIM_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN); \ UNUSED(tmpreg); \ } while(0U) /** * @} */ /** @defgroup RCC_APB2_Clock_Enable_Disable APB2 Peripheral Clock Enable Disable * @brief Enable or disable the APB2 peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_SYSCFG_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_TIM1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_SPI1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \ UNUSED(tmpreg); \ } while(0U) #define __HAL_RCC_USART1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \ UNUSED(tmpreg); \ } while(0U) #if defined(TIM14) #define __HAL_RCC_TIM14_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \ UNUSED(tmpreg); \ } while(0U) #endif #define __HAL_RCC_TIM16_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN); \ UNUSED(tmpreg); \ } while(0U) #if defined(TIM17) #define __HAL_RCC_TIM17_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN); \ UNUSED(tmpreg); \ } while(0U) #endif #define __HAL_RCC_ADC_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \ UNUSED(tmpreg); \ } while(0U) #if defined(COMP1) #define __HAL_RCC_COMP1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN); \ UNUSED(tmpreg); \ } while(0U) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN); \ UNUSED(tmpreg); \ } while(0U) #endif #if defined(LED) #define __HAL_RCC_LED_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN); \ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN); \ UNUSED(tmpreg); \ } while(0U) #endif #if defined(TIM3) #define __HAL_RCC_TIM3_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN) #endif #if defined(RTC) #define __HAL_RCC_RTCAPB_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN) #endif #if defined(SPI2) #define __HAL_RCC_SPI2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN) #endif #if defined(USART2) #define __HAL_RCC_USART2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN) #endif #define __HAL_RCC_I2C_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN) #define __HAL_RCC_DBGMCU_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) #define __HAL_RCC_PWR_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) #define __HAL_RCC_LPTIM_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN) #define __HAL_RCC_SYSCFG_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) #define __HAL_RCC_TIM1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) #define __HAL_RCC_SPI1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) #define __HAL_RCC_USART1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) #if defined(TIM14) #define __HAL_RCC_TIM14_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) #endif #define __HAL_RCC_TIM16_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN) #if defined(TIM17) #define __HAL_RCC_TIM17_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN) #endif #define __HAL_RCC_ADC_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) #if defined(COMP1) #define __HAL_RCC_COMP1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN) #endif #if defined(LED) #define __HAL_RCC_LED_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN) #endif /** * @} */ /** @defgroup RCC_AHB_Peripheral_Clock_Enabled_Disabled_Status AHB Peripheral Clock Enabled or Disabled Status * @brief Check whether the AHB peripheral clock is enabled or not. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #if (defined(DMA) || defined(DMA1)) #define __HAL_RCC_DMA_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN) != RESET) #endif #define __HAL_RCC_FLASH_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) != RESET) #define __HAL_RCC_CRC_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) != RESET) #if (defined(DMA) || defined(DMA1)) #define __HAL_RCC_DMA_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN) == RESET) #endif #define __HAL_RCC_FLASH_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) == RESET) #define __HAL_RCC_CRC_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) == RESET) /** * @} */ /** @defgroup RCC_IOPORT_Clock_Enabled_Disabled_Status IOPORT Clock Enabled or Disabled Status * @brief Check whether the IO Port clock is enabled or not. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_GPIOA_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) != RESET) #define __HAL_RCC_GPIOB_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) != RESET) #define __HAL_RCC_GPIOF_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN) != RESET) #define __HAL_RCC_GPIOA_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) == RESET) #define __HAL_RCC_GPIOB_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) == RESET) #define __HAL_RCC_GPIOF_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN) == RESET) /** * @} */ /** @defgroup RCC_APB1_Clock_Enabled_Disabled_Status APB1 Peripheral Clock Enabled or Disabled Status * @brief Check whether the APB1 peripheral clock is enabled or not. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #if defined(TIM3) #define __HAL_RCC_TIM3_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN) != 0U) #endif #if defined(RTC) #define __HAL_RCC_RTCAPB_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN) != 0U) #endif #if defined(WWDG) #define __HAL_RCC_WWDG_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN) != 0U) #endif #if defined(SPI2) #define __HAL_RCC_SPI2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN) != 0U) #endif #if defined(USART2) #define __HAL_RCC_USART2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN) != 0U) #endif #define __HAL_RCC_I2C_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN) != 0U) #define __HAL_RCC_DBGMCU_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) != 0U) #define __HAL_RCC_PWR_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) != 0U) #define __HAL_RCC_LPTIM_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN) != 0U) #if defined(TIM3) #define __HAL_RCC_TIM3_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN) == 0U) #endif #if defined(RTC) #define __HAL_RCC_RTCAPB_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN) == 0U) #endif #if defined(WWDG) #define __HAL_RCC_WWDG_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN) == 0U) #endif #if defined(SPI2) #define __HAL_RCC_SPI2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN) == 0U) #endif #if defined(USART2) #define __HAL_RCC_USART2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN) == 0U) #endif #define __HAL_RCC_I2C1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN) == 0U) #define __HAL_RCC_DBGMCU_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) == 0U) #define __HAL_RCC_PWR_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) == 0U) #define __HAL_RCC_LPTIM_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN) == 0U) /** * @} */ /** @defgroup RCC_APB2_Clock_Enabled_Disabled_Status APB2 Peripheral Clock Enabled or Disabled Status * @brief Check whether the APB2 peripheral clock is enabled or not. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_SYSCFG_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) != 0U) #define __HAL_RCC_TIM1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) != 0U) #define __HAL_RCC_SPI1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) != 0U) #define __HAL_RCC_USART1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) != 0U) #if defined(TIM14) #define __HAL_RCC_TIM14_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) != 0U) #endif #define __HAL_RCC_TIM16_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN) != 0U) #if defined(TIM17) #define __HAL_RCC_TIM17_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN) != 0U) #endif #define __HAL_RCC_ADC_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) != 0U) #if defined(COMP1) #define __HAL_RCC_COMP1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN) != 0U) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN) != 0U) #endif #if defined(LED) #define __HAL_RCC_LED_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN) != 0U) #endif #define __HAL_RCC_SYSCFG_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) == 0U) #define __HAL_RCC_TIM1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) == 0U) #define __HAL_RCC_SPI1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) == 0U) #define __HAL_RCC_USART1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) == 0U) #if defined(TIM14) #define __HAL_RCC_TIM14_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) == 0U) #endif #define __HAL_RCC_TIM16_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN) == 0U) #if defined(TIM17) #define __HAL_RCC_TIM17_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN) == 0U) #endif #define __HAL_RCC_ADC_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) == 0U) #if defined(COMP1) #define __HAL_RCC_COMP1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN) == 0U) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN) == 0U) #endif #if defined(LED) #define __HAL_RCC_LED_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN) == 0U) #endif /** * @} */ /** @defgroup RCC_AHB_Force_Release_Reset AHB Peripheral Force Release Reset * @brief Force or release AHB1 peripheral reset. * @{ */ #define __HAL_RCC_AHB_FORCE_RESET() WRITE_REG(RCC->AHBRSTR, 0xFFFFFFFFU) #if (defined(DMA) || defined(DMA1)) #define __HAL_RCC_DMA_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMARST) #endif #define __HAL_RCC_FLASH_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST) #define __HAL_RCC_CRC_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST) #define __HAL_RCC_AHB_RELEASE_RESET() WRITE_REG(RCC->AHBRSTR, 0x00000000U) #if (defined(DMA) || defined(DMA1)) #define __HAL_RCC_DMA_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMARST) #endif #define __HAL_RCC_FLASH_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST) #define __HAL_RCC_CRC_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST) /** * @} */ /** @defgroup RCC_IOPORT_Force_Release_Reset IOPORT Force Release Reset * @brief Force or release IO Port reset. * @{ */ #define __HAL_RCC_IOP_FORCE_RESET() WRITE_REG(RCC->IOPRSTR, 0xFFFFFFFFU) #define __HAL_RCC_GPIOA_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST) #define __HAL_RCC_GPIOB_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST) #define __HAL_RCC_GPIOF_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOFRST) #define __HAL_RCC_IOP_RELEASE_RESET() WRITE_REG(RCC->IOPRSTR, 0x00000000U) #define __HAL_RCC_GPIOA_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST) #define __HAL_RCC_GPIOB_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST) #define __HAL_RCC_GPIOF_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOFRST) /** * @} */ /** @defgroup RCC_APB1_Force_Release_Reset APB1 Peripheral Force Release Reset * @brief Force or release APB1 peripheral reset. * @{ */ #define __HAL_RCC_APB1_FORCE_RESET() WRITE_REG(RCC->APBRSTR1, 0xFFFFFFFFU) #if defined(TIM3) #define __HAL_RCC_TIM3_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM3RST) #endif #if defined(SPI2) #define __HAL_RCC_SPI2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI2RST) #endif #if defined(USART2) #define __HAL_RCC_USART2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART2RST) #endif #define __HAL_RCC_I2C_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2CRST) #define __HAL_RCC_DBGMCU_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST) #define __HAL_RCC_PWR_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST) #define __HAL_RCC_LPTIM_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIMRST) #define __HAL_RCC_APB1_RELEASE_RESET() WRITE_REG(RCC->APBRSTR1, 0x00000000U) #if defined(TIM3) #define __HAL_RCC_TIM3_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM3RST) #endif #if defined(SPI2) #define __HAL_RCC_SPI2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI2RST) #endif #if defined(USART2) #define __HAL_RCC_USART2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART2RST) #endif #define __HAL_RCC_I2C_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2CRST) #define __HAL_RCC_DBGMCU_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST) #define __HAL_RCC_PWR_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST) #define __HAL_RCC_LPTIM_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIMRST) /** * @} */ /** @defgroup RCC_APB2_Force_Release_Reset APB2 Peripheral Force Release Reset * @brief Force or release APB2 peripheral reset. * @{ */ #define __HAL_RCC_APB2_FORCE_RESET() WRITE_REG(RCC->APBRSTR2, 0xFFFFFFFFU) #define __HAL_RCC_SYSCFG_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST) #define __HAL_RCC_TIM1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST) #define __HAL_RCC_SPI1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST) #define __HAL_RCC_USART1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST) #if defined(TIM14) #define __HAL_RCC_TIM14_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST) #endif #define __HAL_RCC_TIM16_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM16RST) #if defined(TIM17) #define __HAL_RCC_TIM17_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM17RST) #endif #define __HAL_RCC_ADC_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST) #if defined(COMP1) #define __HAL_RCC_COMP1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP1RST) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP2RST) #endif #if defined(LED) #define __HAL_RCC_LED_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_LEDRST) #endif #define __HAL_RCC_APB2_RELEASE_RESET() WRITE_REG(RCC->APBRSTR2, 0x00U) #define __HAL_RCC_SYSCFG_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST) #define __HAL_RCC_TIM1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST) #define __HAL_RCC_SPI1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST) #define __HAL_RCC_USART1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST) #if defined(TIM14) #define __HAL_RCC_TIM14_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST) #endif #define __HAL_RCC_TIM16_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM16RST) #if defined(TIM17) #define __HAL_RCC_TIM17_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM17RST) #endif #define __HAL_RCC_ADC_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST) #if defined(COMP1) #define __HAL_RCC_COMP1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP1RST) #endif #if defined(COMP2) #define __HAL_RCC_COMP2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP2RST) #endif #if defined(LED) #define __HAL_RCC_LED_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_LEDRST) #endif /** * @} */ /** @defgroup RCC_Backup_Domain_Reset RCC Backup Domain Reset * @{ */ /** @brief Macros to force or release the Backup domain reset. * @note This function resets the RTC peripheral (including the backup registers) * and the RTC clock source selection in RCC_BDCR register. * @retval None */ #define __HAL_RCC_BACKUPRESET_FORCE() SET_BIT(RCC->BDCR, RCC_BDCR_BDRST) #define __HAL_RCC_BACKUPRESET_RELEASE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST) /** * @} */ #if defined(RTC) /** @defgroup RCC_RTC_Clock_Configuration RCC RTC Clock Configuration * @{ */ /** @brief Macros to enable or disable the RTC clock. * @note As the RTC is in the Backup domain and write access is denied to * this domain after reset, you have to enable write access using * HAL_PWR_EnableBkUpAccess() function before to configure the RTC * (to be done once after reset). * @note These macros must be used after the RTC clock source was selected. * @retval None */ #define __HAL_RCC_RTC_ENABLE() SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN) #define __HAL_RCC_RTC_DISABLE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN) /** * @} */ #endif /** @defgroup RCC_Clock_Configuration RCC Clock Configuration * @{ */ /** @brief Macros to enable the Internal High Speed oscillator (HSI). * @note The HSI is stopped by hardware when entering STOP and STANDBY modes. * It is used (enabled by hardware) as system clock source after startup * from Reset, wakeup from STOP and STANDBY mode, or in case of failure * of the HSE used directly or indirectly as system clock (if the Clock * Security System CSS is enabled). * @note After enabling the HSI, the application software should wait on HSIRDY * flag to be set indicating that HSI clock is stable and can be used as * system clock source. * This parameter can be: ENABLE or DISABLE. * @retval None */ #define __HAL_RCC_HSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSION) /** @brief Macros to disable the Internal High Speed oscillator (HSI). * @note HSI can not be stopped if it is used as system clock source. In this case, * you have to select another source of the system clock then stop the HSI. * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator * clock cycles. * @retval None */ #define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION) /** @brief Macro to adjust the Internal High Speed oscillator (HSI) calibration value. * @note The calibration is used to compensate for the variations in voltage * and temperature that influence the frequency of the internal HSI RC. * @param __HSICALIBRATIONVALUE__ specifies the calibration trimming value * (default is RCC_HSICALIBRATION_DEFAULT). * This parameter must be a number between 0 and 127. * @retval None */ #define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICALIBRATIONVALUE__) \ MODIFY_REG(RCC->ICSCR, (RCC_ICSCR_HSI_FS_Msk|RCC_ICSCR_HSI_TRIM), (uint32_t)(__HSICALIBRATIONVALUE__) << RCC_ICSCR_HSI_TRIM_Pos) /** @brief Macro to configure the HSISYS clock. * @param __HSIDIV__ specifies the HSI division factor. * This parameter can be one of the following values: * @arg @ref RCC_HSI_DIV1 HSI clock source is divided by 1 * @arg @ref RCC_HSI_DIV2 HSI clock source is divided by 2 * @arg @ref RCC_HSI_DIV4 HSI clock source is divided by 4 * @arg @ref RCC_HSI_DIV8 HSI clock source is divided by 8 * @arg @ref RCC_HSI_DIV16 HSI clock source is divided by 16 * @arg @ref RCC_HSI_DIV32 HSI clock source is divided by 32 * @arg @ref RCC_HSI_DIV64 HSI clock source is divided by 64 * @arg @ref RCC_HSI_DIV128 HSI clock source is divided by 128 */ #define __HAL_RCC_HSI_CONFIG(__HSIDIV__) \ MODIFY_REG(RCC->CR, RCC_CR_HSIDIV, (__HSIDIV__)) /** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI). * @note After enabling the LSI, the application software should wait on * LSIRDY flag to be set indicating that LSI clock is stable and can * be used to clock the IWDG and/or the RTC. * @note LSI can not be disabled if the IWDG is running. * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator * clock cycles. * @retval None */ #define __HAL_RCC_LSI_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_LSION) #define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_LSION) /** * @brief Macro to configure the External High Speed oscillator (HSE). * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not * supported by this macro. User should request a transition to HSE Off * first and then HSE On or HSE Bypass. * @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application * software should wait on HSERDY flag to be set indicating that HSE clock * is stable and can be used to clock the PLL and/or system clock. * @note HSE state can not be changed if it is used directly or through the * PLL as system clock. In this case, you have to select another source * of the system clock then change the HSE state (ex. disable it). * @note The HSE is stopped by hardware when entering STOP and STANDBY modes. * @note This function reset the CSSON bit, so if the clock security system(CSS) * was previously enabled you have to enable it again after calling this * function. * @param __STATE__ specifies the new state of the HSE. * This parameter can be one of the following values: * @arg @ref RCC_HSE_OFF Turn OFF the HSE oscillator, HSERDY flag goes low after * 6 HSE oscillator clock cycles. * @arg @ref RCC_HSE_ON Turn ON the HSE oscillator. * @arg @ref RCC_HSE_BYPASS HSE oscillator bypassed with external clock. * @retval None */ #define __HAL_RCC_HSE_CONFIG(__STATE__) \ do { \ if((__STATE__) == RCC_HSE_ON) \ { \ SET_BIT(RCC->CR, RCC_CR_HSEON); \ } \ else if((__STATE__) == RCC_HSE_BYPASS) \ { \ SET_BIT(RCC->CR, RCC_CR_HSEBYP); \ SET_BIT(RCC->CR, RCC_CR_HSEON); \ } \ else \ { \ CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \ } \ } while(0U) #if defined(RCC_LSE_SUPPORT) /** * @brief Macro to configure the External Low Speed oscillator (LSE). * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not * supported by this macro. User should request a transition to LSE Off * first and then LSE On or LSE Bypass. * @note As the LSE is in the Backup domain and write access is denied to * this domain after reset, you have to enable write access using * HAL_PWR_EnableBkUpAccess() function before to configure the LSE * (to be done once after reset). * @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application * software should wait on LSERDY flag to be set indicating that LSE clock * is stable and can be used to clock the RTC. * @param __STATE__ specifies the new state of the LSE. * This parameter can be one of the following values: * @arg @ref RCC_LSE_OFF Turn OFF the LSE oscillator, LSERDY flag goes low after * 6 LSE oscillator clock cycles. * @arg @ref RCC_LSE_ON Turn ON the LSE oscillator. * @arg @ref RCC_LSE_BYPASS LSE oscillator bypassed with external clock. * @retval None */ #define __HAL_RCC_LSE_CONFIG(__STATE__) \ do { \ if((__STATE__) == RCC_LSE_ON) \ { \ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ } \ else if((__STATE__) == RCC_LSE_BYPASS) \ { \ SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ } \ else \ { \ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ } \ } while(0U) #endif /** * @} */ #if defined(RTC) /** @addtogroup RCC_RTC_Clock_Configuration * @{ */ /** @brief Macros to configure the RTC clock (RTCCLK). * @note As the RTC clock configuration bits are in the Backup domain and write * access is denied to this domain after reset, you have to enable write * access using the Power Backup Access macro before to configure * the RTC clock source (to be done once after reset). * @note Once the RTC clock is configured it cannot be changed unless the * Backup domain is reset using __HAL_RCC_BACKUPRESET_FORCE() macro, or by * a Power On Reset (POR). * * @param __RTC_CLKSOURCE__ specifies the RTC clock source. * This parameter can be one of the following values: * @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock. * @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock. * @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock. * @arg @ref RCC_RTCCLKSOURCE_HSE_DIV128 HSE clock divided by 128 selected * * @note If the LSE or LSI is used as RTC clock source, the RTC continues to * work in STOP and STANDBY modes, and can be used as wakeup source. * However, when the HSE clock is used as RTC clock source, the RTC * cannot be used in STOP and STANDBY modes. * @note The maximum input clock frequency for RTC is 1MHz (when using HSE as * RTC clock source). * @retval None */ #define __HAL_RCC_RTC_CONFIG(__RTC_CLKSOURCE__) \ MODIFY_REG( RCC->BDCR, RCC_BDCR_RTCSEL, (__RTC_CLKSOURCE__)) /** @brief Macro to get the RTC clock source. * @retval The returned value can be one of the following: * @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock. * @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock. * @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock. * @arg @ref RCC_RTCCLKSOURCE_HSE_DIV128 HSE clock divided by 128 selected */ #define __HAL_RCC_GET_RTC_SOURCE() ((uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL))) /** @brief Macros to enable or disable the main PLL. * @note After enabling the main PLL, the application software should wait on * PLLRDY flag to be set indicating that PLL clock is stable and can * be used as system clock source. * @note The main PLL can not be disabled if it is used as system clock source * @note The main PLL is disabled by hardware when entering STOP and STANDBY modes. * @retval None */ /** * @} */ #endif /** @addtogroup RCC_Clock_Configuration * @{ */ #if defined(RCC_PLL_SUPPORT) #define __HAL_RCC_PLL_ENABLE() SET_BIT(RCC->CR, RCC_CR_PLLON) #define __HAL_RCC_PLL_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_PLLON) /** @brief Macro to configure the PLL clock source. * @note This function must be used only when the main PLL is disabled. * @param __PLLSOURCE__ specifies the PLL entry clock source. * This parameter can be one of the following values: * @arg @ref RCC_PLLSOURCE_HSI HSI oscillator clock selected as PLL clock entry * @arg @ref RCC_PLLSOURCE_HSE HSE oscillator clock selected as PLL clock entry * @retval None * */ #define __HAL_RCC_PLL_PLLSOURCE_CONFIG(__PLLSOURCE__) \ MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (__PLLSOURCE__)) /** @brief Macro to get the oscillator used as PLL clock source. * @retval The oscillator used as PLL clock source. The returned value can be one * of the following: * @arg @ref RCC_PLLSOURCE_HSI HSI oscillator is used as PLL clock source. * @arg @ref RCC_PLLSOURCE_HSE HSE oscillator is used as PLL clock source. */ #define __HAL_RCC_GET_PLL_OSCSOURCE() ((uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC)) #endif /** * @brief Macro to configure the system clock source. * @param __SYSCLKSOURCE__ specifies the system clock source. * This parameter can be one of the following values: * @arg @ref RCC_SYSCLKSOURCE_HSI HSI oscillator is used as system clock source. * @arg @ref RCC_SYSCLKSOURCE_HSE HSE oscillator is used as system clock source. * @arg @ref RCC_SYSCLKSOURCE_PLLCLK PLL output is used as system clock source. * @arg @ref RCC_SYSCLKSOURCE_LSI LSI oscillator is used as system clock source. * @arg @ref RCC_SYSCLKSOURCE_LSE LSE oscillator is used as system clock source. * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ #define __HAL_RCC_SYSCLK_CONFIG(__SYSCLKSOURCE__) \ MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__SYSCLKSOURCE__)) /** @brief Macro to get the clock source used as system clock. * @retval The clock source used as system clock. The returned value can be one * of the following: * @arg @ref RCC_SYSCLKSOURCE_STATUS_HSI HSI used as system clock. * @arg @ref RCC_SYSCLKSOURCE_STATUS_HSE HSE used as system clock. * @arg @ref RCC_SYSCLKSOURCE_STATUS_PLLCLK PLL used as system clock. * @arg @ref RCC_SYSCLKSOURCE_STATUS_LSI LSI used as system clock source. * @arg @ref RCC_SYSCLKSOURCE_STATUS_LSE LSE used as system clock source. * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. */ #define __HAL_RCC_GET_SYSCLK_SOURCE() (RCC->CFGR & RCC_CFGR_SWS) #if defined(RCC_LSE_SUPPORT) /** * @brief Macro to configure the External Low Speed oscillator (LSE) drive capability. * @note As the LSE is in the Backup domain and write access is denied to * this domain after reset, you have to enable write access using * HAL_PWR_EnableBkUpAccess() function before to configure the LSE * (to be done once after reset). * @param __LSEDRIVE__ specifies the new state of the LSE drive capability. * This parameter can be one of the following values: * @arg @ref RCC_LSEDRIVE_LOW LSE oscillator low drive capability. * @arg @ref RCC_LSEDRIVE_MEDIUM LSE oscillator medium low drive capability. * @arg @ref RCC_LSEDRIVE_HIGH LSE oscillator high drive capability. * @retval None */ #define __HAL_RCC_LSEDRIVE_CONFIG(__LSEDRIVE__) \ MODIFY_REG(RCC->ECSCR, RCC_ECSCR_LSE_DRIVER, (uint32_t)(__LSEDRIVE__)) #endif /** @brief Macro to configure the MCO clock. * @param __MCOCLKSOURCE__ specifies the MCO clock source. * This parameter can be one of the following values: * @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO source * @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source * @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee * @arg @ref RCC_MCO1SOURCE_PLLCLK Main PLL clock selected as MCO source * @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @param __MCODIV__ specifies the MCO clock prescaler. * This parameter can be one of the following values: * @arg @ref RCC_MCODIV_1 MCO clock source is divided by 1 * @arg @ref RCC_MCODIV_2 MCO clock source is divided by 2 * @arg @ref RCC_MCODIV_4 MCO clock source is divided by 4 * @arg @ref RCC_MCODIV_8 MCO clock source is divided by 8 * @arg @ref RCC_MCODIV_16 MCO clock source is divided by 16 * @arg @ref RCC_MCODIV_32 MCO clock source is divided by 32 * @arg @ref RCC_MCODIV_64 MCO clock source is divided by 64 * @arg @ref RCC_MCODIV_128 MCO clock source is divided by 128 */ #define __HAL_RCC_MCO1_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \ MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), ((__MCOCLKSOURCE__) | (__MCODIV__))) /** * @} */ /** @defgroup RCC_Flags_Interrupts_Management Flags Interrupts Management * @brief macros to manage the specified RCC Flags and interrupts. * @{ */ /** @brief Enable RCC interrupt. * @param __INTERRUPT__ specifies the RCC interrupt sources to be enabled. * This parameter can be any combination of the following values: * @arg @ref RCC_IT_LSIRDY LSI ready interrupt * @arg @ref RCC_IT_LSERDY LSE ready interrupt * @arg @ref RCC_IT_HSIRDY HSI ready interrupt * @arg @ref RCC_IT_HSERDY HSE ready interrupt * @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ #define __HAL_RCC_ENABLE_IT(__INTERRUPT__) SET_BIT(RCC->CIER, (__INTERRUPT__)) /** @brief Disable RCC interrupt. * @param __INTERRUPT__ specifies the RCC interrupt sources to be disabled. * This parameter can be any combination of the following values: * @arg @ref RCC_IT_LSIRDY LSI ready interrupt * @arg @ref RCC_IT_LSERDY LSE ready interrupt * @arg @ref RCC_IT_HSIRDY HSI ready interrupt * @arg @ref RCC_IT_HSERDY HSE ready interrupt * @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ #define __HAL_RCC_DISABLE_IT(__INTERRUPT__) CLEAR_BIT(RCC->CIER, (__INTERRUPT__)) /** @brief Clear RCC interrupt pending bits. * @param __INTERRUPT__ specifies the interrupt pending bit to clear. * This parameter can be any combination of the following values: * @arg @ref RCC_IT_LSIRDY LSI ready interrupt * @arg @ref RCC_IT_LSERDY LSE ready interrupt * @arg @ref RCC_IT_HSIRDY HSI ready interrupt * @arg @ref RCC_IT_HSERDY HSE ready interrupt * @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt * @arg @ref RCC_IT_CSS HSE Clock security system interrupt * @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval None */ #define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (RCC->CICR = (__INTERRUPT__)) /** @brief Check whether the RCC interrupt has occurred or not. * @param __INTERRUPT__ specifies the RCC interrupt source to check. * This parameter can be one of the following values: * @arg @ref RCC_IT_LSIRDY LSI ready interrupt * @arg @ref RCC_IT_LSERDY LSE ready interrupt * @arg @ref RCC_IT_HSIRDY HSI ready interrupt * @arg @ref RCC_IT_HSERDY HSE ready interrupt * @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt * @arg @ref RCC_IT_CSS HSE Clock security system interrupt * @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt * @note Depending on devices and packages, some clocks may not be available. * Refer to device datasheet for clocks availability. * @retval The new state of __INTERRUPT__ (TRUE or FALSE). */ #define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIFR & (__INTERRUPT__)) == (__INTERRUPT__)) /** @brief Set RMVF bit to clear the reset flags. * The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PWRRST, * RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST. * @note Depending on the device and software package, some flag bits may not be available. * Refer to the device data sheet for flag bit availability. * @retval None */ #define __HAL_RCC_CLEAR_RESET_FLAGS() (RCC->CSR |= RCC_CSR_RMVF) /** @brief Check whether the selected RCC flag is set or not. * @param __FLAG__ specifies the flag to check. * This parameter can be one of the following values: * @arg @ref RCC_FLAG_HSIRDY HSI oscillator clock ready * @arg @ref RCC_FLAG_HSERDY HSE oscillator clock ready * @arg @ref RCC_FLAG_PLLRDY Main PLL clock ready * @arg @ref RCC_FLAG_LSERDY LSE oscillator clock ready * @arg @ref RCC_FLAG_LSIRDY LSI oscillator clock ready * @arg @ref RCC_FLAG_PWRRST BOR or POR/PDR reset * @arg @ref RCC_FLAG_OBLRST OBLRST reset * @arg @ref RCC_FLAG_PINRST Pin reset * @arg @ref RCC_FLAG_SFTRST Software reset * @arg @ref RCC_FLAG_IWDGRST Independent Watchdog reset * @arg @ref RCC_FLAG_WWDGRST Window Watchdog reset * @note Depending on the device and software package, some flag bits may not be available. * Refer to the device data sheet for flag bit availability. * @retval The new state of __FLAG__ (TRUE or FALSE). */ #define __HAL_RCC_GET_FLAG(__FLAG__) (((((((__FLAG__) >> 5U) == CR_REG_INDEX) ? RCC->CR : \ ((((__FLAG__) >> 5U) == BDCR_REG_INDEX) ? RCC->BDCR : \ ((((__FLAG__) >> 5U) == CSR_REG_INDEX) ? RCC->CSR : RCC->CIFR))) & \ (1U << ((__FLAG__) & RCC_FLAG_MASK))) != RESET) \ ? 1U : 0U) /** * @} */ /** * @} */ /* Include RCC HAL Extended module */ #include "py32f0xx_hal_rcc_ex.h" /* Exported functions --------------------------------------------------------*/ /** @addtogroup RCC_Exported_Functions * @{ */ /** @addtogroup RCC_Exported_Functions_Group1 * @{ */ /* Initialization and de-initialization functions ******************************/ HAL_StatusTypeDef HAL_RCC_DeInit(void); HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency); /** * @} */ /** @addtogroup RCC_Exported_Functions_Group2 * @{ */ /* Peripheral Control functions ************************************************/ void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv); void HAL_RCC_EnableCSS(void); #if defined(RCC_LSE_SUPPORT) void HAL_RCC_EnableLSECSS(void); void HAL_RCC_DisableLSECSS(void); void HAL_RCC_LSECSSCallback(void); #endif uint32_t HAL_RCC_GetSysClockFreq(void); uint32_t HAL_RCC_GetHCLKFreq(void); uint32_t HAL_RCC_GetPCLK1Freq(void); void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency); /* LSE & HSE CSS NMI IRQ handler */ void HAL_RCC_NMI_IRQHandler(void); /* User Callbacks in non blocking mode (IT mode) */ void HAL_RCC_CSSCallback(void); /** * @} */ /** * @} */ /** * @} */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __PY32F0xx_HAL_RCC_H */ /************************ (C) COPYRIGHT Puya *****END OF FILE****/