You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1746 lines
86 KiB

/**
******************************************************************************
* @file py32f0xx_hal_rcc.h
* @author MCU Application Team
* @brief Header file of RCC HAL module.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2023 Puya Semiconductor Co.
* All rights reserved.</center></h2>
*
* This software component is licensed by Puya under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __PY32F0xx_HAL_RCC_H
#define __PY32F0xx_HAL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "py32f0xx_hal_def.h"
/** @addtogroup PY32F0xx_HAL_Driver
* @{
*/
/** @addtogroup RCC
* @{
*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup RCC_Private_Constants
* @{
*/
/* Defines used for Flags */
#define CR_REG_INDEX 1U
#define BDCR_REG_INDEX 2U
#define CSR_REG_INDEX 3U
#define RCC_FLAG_MASK 0x1FU
/* Define used for IS_RCC_CLOCKTYPE() */
#define RCC_CLOCKTYPE_ALL (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1) /*!< All clocktype to configure */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup RCC_Private_Macros
* @{
*/
#if (defined(PY32F003PRE) || defined(PY32F002APRE))
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) (((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI))
#else
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) (((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE))
#endif
#define IS_RCC_HSE(__HSE__) (((__HSE__) == RCC_HSE_OFF) || ((__HSE__) == RCC_HSE_ON) || \
((__HSE__) == RCC_HSE_BYPASS))
#if defined(PY32F002APRE)
#define IS_RCC_HSE_FREQ(__FREQ__) (((__FREQ__) == RCC_HSE_4_8MHz) || ((__FREQ__) == RCC_HSE_8_16MHz) || \
((__FREQ__) == RCC_HSE_16_24MHz))
#else
#define IS_RCC_HSE_FREQ(__FREQ__) (((__FREQ__) == RCC_HSE_4_8MHz) || ((__FREQ__) == RCC_HSE_8_16MHz) || \
((__FREQ__) == RCC_HSE_16_32MHz))
#endif
#if defined(RCC_LSE_SUPPORT)
#define IS_RCC_LSE(__LSE__) (((__LSE__) == RCC_LSE_OFF) || ((__LSE__) == RCC_LSE_ON) || \
((__LSE__) == RCC_LSE_BYPASS))
#endif
#define IS_RCC_HSI(__HSI__) (((__HSI__) == RCC_HSI_OFF) || ((__HSI__) == RCC_HSI_ON))
#if defined(PY32F002APRE)
#define IS_RCC_HSI_CALIBRATION_VALUE(__VALUE__) ((__VALUE__) == RCC_HSICALIBRATION_8MHz || \
(__VALUE__) == RCC_HSICALIBRATION_24MHz)
#else
#define IS_RCC_HSI_CALIBRATION_VALUE(__VALUE__) (((__VALUE__) == RCC_HSICALIBRATION_4MHz) || \
((__VALUE__) == RCC_HSICALIBRATION_8MHz) || \
((__VALUE__) == RCC_HSICALIBRATION_16MHz) || \
((__VALUE__) == RCC_HSICALIBRATION_22p12MHz) || \
((__VALUE__) == RCC_HSICALIBRATION_24MHz))
#endif
#define IS_RCC_HSIDIV(__DIV__) (((__DIV__) == RCC_HSI_DIV1) || ((__DIV__) == RCC_HSI_DIV2) || \
((__DIV__) == RCC_HSI_DIV4) || ((__DIV__) == RCC_HSI_DIV8) || \
((__DIV__) == RCC_HSI_DIV16) || ((__DIV__) == RCC_HSI_DIV32)|| \
((__DIV__) == RCC_HSI_DIV64) || ((__DIV__) == RCC_HSI_DIV128))
#define IS_RCC_LSI(__LSI__) (((__LSI__) == RCC_LSI_OFF) || ((__LSI__) == RCC_LSI_ON))
#if defined(RCC_PLL_SUPPORT)
#define IS_RCC_PLL(__PLL__) (((__PLL__) == RCC_PLL_NONE) ||((__PLL__) == RCC_PLL_OFF) || \
((__PLL__) == RCC_PLL_ON))
#define IS_RCC_PLLSOURCE(__SOURCE__) (((__SOURCE__) == RCC_PLLSOURCE_HSI) || \
((__SOURCE__) == RCC_PLLSOURCE_HSE))
#endif
#define IS_RCC_CLOCKTYPE(__CLK__) ((((__CLK__) & RCC_CLOCKTYPE_ALL) != 0x00UL) && (((__CLK__) & ~RCC_CLOCKTYPE_ALL) == 0x00UL))
#if (defined(PY32F003PRE) || defined(PY32F002APRE))
#define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_LSI))
#else
#define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_LSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_LSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_PLLCLK))
#endif
#define IS_RCC_HCLK(__HCLK__) (((__HCLK__) == RCC_SYSCLK_DIV1) || ((__HCLK__) == RCC_SYSCLK_DIV2) || \
((__HCLK__) == RCC_SYSCLK_DIV4) || ((__HCLK__) == RCC_SYSCLK_DIV8) || \
((__HCLK__) == RCC_SYSCLK_DIV16) || ((__HCLK__) == RCC_SYSCLK_DIV64) || \
((__HCLK__) == RCC_SYSCLK_DIV128) || ((__HCLK__) == RCC_SYSCLK_DIV256) || \
((__HCLK__) == RCC_SYSCLK_DIV512))
#define IS_RCC_PCLK(__PCLK__) (((__PCLK__) == RCC_HCLK_DIV1) || ((__PCLK__) == RCC_HCLK_DIV2) || \
((__PCLK__) == RCC_HCLK_DIV4) || ((__PCLK__) == RCC_HCLK_DIV8) || \
((__PCLK__) == RCC_HCLK_DIV16))
#if defined(RCC_LSE_SUPPORT)
#define IS_RCC_RTCCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_RTCCLKSOURCE_NONE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV128))
#else
#define IS_RCC_RTCCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_RTCCLKSOURCE_NONE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV128))
#endif
#define IS_RCC_MCO(__MCOX__) ((__MCOX__) == RCC_MCO1)
#if (defined(PY32F003PRE) || defined(PY32F002APRE))
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI))
#else
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSE))
#endif
#define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1) || ((__DIV__) == RCC_MCODIV_2) || \
((__DIV__) == RCC_MCODIV_4) || ((__DIV__) == RCC_MCODIV_8) || \
((__DIV__) == RCC_MCODIV_16)|| ((__DIV__) == RCC_MCODIV_32) || \
((__DIV__) == RCC_MCODIV_64)|| ((__DIV__) == RCC_MCODIV_128))
#if defined(RCC_LSE_SUPPORT)
#define IS_RCC_LSE_DRIVE(__DRIVE__) (((__DRIVE__) == RCC_LSEDRIVE_LOW) || \
((__DRIVE__) == RCC_LSEDRIVE_MEDIUM) || \
((__DRIVE__) == RCC_LSEDRIVE_HIGH))
#endif
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup RCC_Exported_Types RCC Exported Types
* @{
*/
#if defined(RCC_PLL_SUPPORT)
/**
* @brief RCC PLL configuration structure definition
*/
typedef struct
{
uint32_t PLLState; /*!< The new state of the PLL.
This parameter can be a value of @ref RCC_PLL_Config */
uint32_t PLLSource; /*!< RCC_PLLSource: PLL entry clock source.
This parameter must be a value of @ref RCC_PLL_Clock_Source */
} RCC_PLLInitTypeDef;
#endif
/**
* @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition
*/
typedef struct
{
uint32_t OscillatorType; /*!< The oscillators to be configured.
This parameter can be a value of @ref RCC_Oscillator_Type */
uint32_t HSEState; /*!< The new state of the HSE.
This parameter can be a value of @ref RCC_HSE_Config */
uint32_t HSEFreq; /*!< The frequency range of the HSE.
This parameter can be a value of @ref RCC_HSE_Freq */
#if defined(RCC_LSE_SUPPORT)
uint32_t LSEState; /*!< The new state of the LSE.
This parameter can be a value of @ref RCC_LSE_Config */
uint32_t LSEDriver; /*!< The driver factor of the LSE.
This parameter can be a value of @ref RCC_LSE_Driver */
#endif
uint32_t HSIState; /*!< The new state of the HSI.
This parameter can be a value of @ref RCC_HSI_Config */
uint32_t HSIDiv; /*!< The division factor of the HSI.
This parameter can be a value of @ref RCC_HSI_Div */
uint32_t HSICalibrationValue; /*!< The calibration trimming value (default is RCC_HSICALIBRATION_8MHz).
This parameter can be a value of @ref RCC_HSI_Calibration */
uint32_t LSIState; /*!< The new state of the LSI.
This parameter can be a value of @ref RCC_LSI_Config */
#if defined(RCC_PLL_SUPPORT)
RCC_PLLInitTypeDef PLL; /*!< Main PLL structure parameters */
#endif
} RCC_OscInitTypeDef;
/**
* @brief RCC System, AHB and APB busses clock configuration structure definition
*/
typedef struct
{
uint32_t ClockType; /*!< The clock to be configured.
This parameter can be a combination of @ref RCC_System_Clock_Type */
uint32_t SYSCLKSource; /*!< The clock source used as system clock (SYSCLK).
This parameter can be a value of @ref RCC_System_Clock_Source */
uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_AHB_Clock_Source */
uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_APB1_Clock_Source */
} RCC_ClkInitTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_Timeout_Value Timeout Values
* @{
*/
#define RCC_DBP_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
#if defined(RCC_LSE_SUPPORT)
#define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT /* LSE timeout in ms */
#endif
/**
* @}
*/
/** @defgroup RCC_Oscillator_Type Oscillator Type
* @{
*/
#define RCC_OSCILLATORTYPE_NONE 0x00000000U /*!< Oscillator configuration unchanged */
#define RCC_OSCILLATORTYPE_HSE 0x00000001U /*!< HSE to configure */
#define RCC_OSCILLATORTYPE_HSI 0x00000002U /*!< HSI to configure */
#if defined(RCC_LSE_SUPPORT)
#define RCC_OSCILLATORTYPE_LSE 0x00000004U /*!< LSE to configure */
#endif
#define RCC_OSCILLATORTYPE_LSI 0x00000008U /*!< LSI to configure */
/**
* @}
*/
/** @defgroup RCC_HSE_Config HSE Config
* @{
*/
#define RCC_HSE_OFF 0x00000000U /*!< HSE clock deactivation */
#define RCC_HSE_ON RCC_CR_HSEON /*!< HSE clock activation */
#define RCC_HSE_BYPASS ((uint32_t)(RCC_CR_HSEBYP | RCC_CR_HSEON)) /*!< External clock source for HSE clock */
/**
* @}
*/
/** @defgroup RCC_HSE_Freq HSE Config
* @{
*/
#define RCC_HSE_4_8MHz RCC_ECSCR_HSE_FREQ_0
#define RCC_HSE_8_16MHz RCC_ECSCR_HSE_FREQ_1
#if defined(PY32F002APRE)
#define RCC_HSE_16_24MHz (RCC_ECSCR_HSE_FREQ_0 | RCC_ECSCR_HSE_FREQ_1)
#else
#define RCC_HSE_16_32MHz (RCC_ECSCR_HSE_FREQ_0 | RCC_ECSCR_HSE_FREQ_1)
#endif
/**
* @}
*/
#if defined(RCC_LSE_SUPPORT)
/** @defgroup RCC_LSE_Config LSE Config
* @{
*/
#define RCC_LSE_OFF 0x00000000U /*!< LSE clock deactivation */
#define RCC_LSE_ON RCC_BDCR_LSEON /*!< LSE clock activation */
#define RCC_LSE_BYPASS ((uint32_t)(RCC_BDCR_LSEBYP | RCC_BDCR_LSEON)) /*!< External clock source for LSE clock */
/**
* @}
*/
/** @defgroup RCC_LSE_Driver LSE Config
* @{
*/
#define RCC_LSEDRIVE_LOW RCC_ECSCR_LSE_DRIVER_0 /*!< LSE low drive capability */
#define RCC_LSEDRIVE_MEDIUM RCC_ECSCR_LSE_DRIVER_1 /*!< LSE medium drive capability */
#define RCC_LSEDRIVE_HIGH (RCC_ECSCR_LSE_DRIVER_0 | RCC_ECSCR_LSE_DRIVER_1) /*!< LSE high drive capability */
/**
* @}
*/
#endif
/** @defgroup RCC_HSI_Config HSI Config
* @{
*/
#define RCC_HSI_OFF 0x00000000U /*!< HSI clock deactivation */
#define RCC_HSI_ON RCC_CR_HSION /*!< HSI clock activation */
/**
* @}
*/
/** @defgroup RCC_HSI_Calibration HSI Calibration
* @{
*/
#if defined(PY32F002APRE)
#define RCC_HSICALIBRATION_8MHz ((0x1<<13) | ((*(uint32_t *)(0x1FFF0F04)) & 0x1FFF)) /*!< 8MHz HSI calibration trimming value */
#define RCC_HSICALIBRATION_24MHz ((0x4<<13) | ((*(uint32_t *)(0x1FFF0F10)) & 0x1FFF)) /*!< 24MHz HSI calibration trimming value */
#else
#define RCC_HSICALIBRATION_4MHz ((0x0<<13) | ((*(uint32_t *)(0x1FFF0F00)) & 0x1FFF)) /*!< 4MHz HSI calibration trimming value */
#define RCC_HSICALIBRATION_8MHz ((0x1<<13) | ((*(uint32_t *)(0x1FFF0F04)) & 0x1FFF)) /*!< 8MHz HSI calibration trimming value */
#define RCC_HSICALIBRATION_16MHz ((0x2<<13) | ((*(uint32_t *)(0x1FFF0F08)) & 0x1FFF)) /*!< 16MHz HSI calibration trimming value */
#define RCC_HSICALIBRATION_22p12MHz ((0x3<<13) | ((*(uint32_t *)(0x1FFF0F0C)) & 0x1FFF)) /*!< 22.12MHz HSI calibration trimming value */
#define RCC_HSICALIBRATION_24MHz ((0x4<<13) | ((*(uint32_t *)(0x1FFF0F10)) & 0x1FFF)) /*!< 24MHz HSI calibration trimming value */
#endif
/**
* @}
*/
/** @defgroup RCC_HSI_Div HSI Div
* @{
*/
#define RCC_HSI_DIV1 0x00000000U /*!< HSI clock is not divided */
#define RCC_HSI_DIV2 RCC_CR_HSIDIV_0 /*!< HSI clock is divided by 2 */
#define RCC_HSI_DIV4 RCC_CR_HSIDIV_1 /*!< HSI clock is divided by 4 */
#define RCC_HSI_DIV8 (RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 8 */
#define RCC_HSI_DIV16 RCC_CR_HSIDIV_2 /*!< HSI clock is divided by 16 */
#define RCC_HSI_DIV32 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 32 */
#define RCC_HSI_DIV64 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1) /*!< HSI clock is divided by 64 */
#define RCC_HSI_DIV128 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 128 */
/**
* @}
*/
/** @defgroup RCC_LSI_Config LSI Config
* @{
*/
#define RCC_LSI_OFF 0x00000000U /*!< LSI clock deactivation */
#define RCC_LSI_ON RCC_CSR_LSION /*!< LSI clock activation */
/**
* @}
*/
#if defined(RCC_PLL_SUPPORT)
/** @defgroup RCC_PLL_Config PLL Config
* @{
*/
#define RCC_PLL_NONE 0x00000000U /*!< PLL configuration unchanged */
#define RCC_PLL_OFF 0x00000001U /*!< PLL deactivation */
#define RCC_PLL_ON 0x00000002U /*!< PLL activation */
/**
* @}
*/
/** @defgroup RCC_PLL_Clock_Source PLL Clock Source
* @{
*/
#define RCC_PLLSOURCE_HSI RCC_PLLCFGR_PLLSRC_HSI /*!< HSI clock selected as PLL entry clock source */
#define RCC_PLLSOURCE_HSE RCC_PLLCFGR_PLLSRC_HSE /*!< HSE clock selected as PLL entry clock source */
/**
* @}
*/
#endif
/** @defgroup RCC_System_Clock_Type System Clock Type
* @{
*/
#define RCC_CLOCKTYPE_SYSCLK 0x00000001U /*!< SYSCLK to configure */
#define RCC_CLOCKTYPE_HCLK 0x00000002U /*!< HCLK to configure */
#define RCC_CLOCKTYPE_PCLK1 0x00000004U /*!< PCLK1 to configure */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source System Clock Source
* @{
*/
#define RCC_SYSCLKSOURCE_HSI 0x00000000U /*!< HSI selection as system clock */
#define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_0 /*!< HSE selection as system clock */
#if defined(RCC_PLL_SUPPORT)
#define RCC_SYSCLKSOURCE_PLLCLK RCC_CFGR_SW_1 /*!< PLL selection as system clock */
#endif
#define RCC_SYSCLKSOURCE_LSI (RCC_CFGR_SW_1 | RCC_CFGR_SW_0) /*!< LSI selection as system clock */
#if defined(RCC_LSE_SUPPORT)
#define RCC_SYSCLKSOURCE_LSE RCC_CFGR_SW_2 /*!< LSE selection as system clock */
#endif
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source_Status System Clock Source Status
* @{
*/
#define RCC_SYSCLKSOURCE_STATUS_HSI 0x00000000U /*!< HSI used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_0 /*!< HSE used as system clock */
#if defined(RCC_PLL_SUPPORT)
#define RCC_SYSCLKSOURCE_STATUS_PLLCLK RCC_CFGR_SWS_1 /*!< PLL used as system clock */
#endif
#define RCC_SYSCLKSOURCE_STATUS_LSI (RCC_CFGR_SWS_1 | RCC_CFGR_SWS_0) /*!< LSI used as system clock */
#if defined(RCC_LSE_SUPPORT)
#define RCC_SYSCLKSOURCE_STATUS_LSE RCC_CFGR_SWS_2 /*!< LSE used as system clock */
#endif
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Source AHB Clock Source
* @{
*/
#define RCC_SYSCLK_DIV1 0x00000000U /*!< SYSCLK not divided */
#define RCC_SYSCLK_DIV2 RCC_CFGR_HPRE_3 /*!< SYSCLK divided by 2 */
#define RCC_SYSCLK_DIV4 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 4 */
#define RCC_SYSCLK_DIV8 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 8 */
#define RCC_SYSCLK_DIV16 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 16 */
#define RCC_SYSCLK_DIV64 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2) /*!< SYSCLK divided by 64 */
#define RCC_SYSCLK_DIV128 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 128 */
#define RCC_SYSCLK_DIV256 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 256 */
#define RCC_SYSCLK_DIV512 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Source APB Clock Source
* @{
*/
#define RCC_HCLK_DIV1 0x00000000U /*!< HCLK not divided */
#define RCC_HCLK_DIV2 RCC_CFGR_PPRE_2 /*!< HCLK divided by 2 */
#define RCC_HCLK_DIV4 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 4 */
#define RCC_HCLK_DIV8 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1) /*!< HCLK divided by 8 */
#define RCC_HCLK_DIV16 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 16 */
/**
* @}
*/
#if defined(RCC_BDCR_RTCSEL)
/** @defgroup RCC_RTC_Clock_Source RTC Clock Source
* @{
*/
#define RCC_RTCCLKSOURCE_NONE 0x00000000U /*!< No clock configured for RTC */
#if defined(RCC_LSE_SUPPORT)
#define RCC_RTCCLKSOURCE_LSE RCC_BDCR_RTCSEL_0 /*!< LSE oscillator clock used as RTC clock */
#endif
#define RCC_RTCCLKSOURCE_LSI RCC_BDCR_RTCSEL_1 /*!< LSI oscillator clock used as RTC clock */
#define RCC_RTCCLKSOURCE_HSE_DIV128 RCC_BDCR_RTCSEL /*!< HSE oscillator clock divided by 128 used as RTC clock */
/**
* @}
*/
#endif
/** @defgroup RCC_MCO_Index MCO Index
* @{
*/
#define RCC_MCO 0x00000000U
#define RCC_MCO1 RCC_MCO /*!< PA08 MCO1 to be compliant with other families with 2 MCOs*/
#define RCC_MCO2 0x00000001U /*!< Configure PA01 as the clock output. */
#define RCC_MCO3 0x00000002U /*!< Configure PA05 as the clock output. */
#define RCC_MCO4 0x00000003U /*!< Configure PA09 as the clock output. */
#define RCC_MCO5 0x00000004U /*!< Configure PA13 as the clock output.Note:PA13 is SWD_SWDIO Pin */
#define RCC_MCO6 0x00000005U /*!< Configure PA14 as the clock output.Note:PA14 is SWD_SWCLK Pin */
#define RCC_MCO7 0x00000006U /*!< Configure PF02 as the clock output.Note:Defaults to the reset pin, Optionbyte needs to be configured */
/**
* @}
*/
/** @defgroup RCC_MCO1_Clock_Source MCO1 Clock Source
* @{
*/
#define RCC_MCO1SOURCE_NOCLOCK 0x00000000U /*!< MCO1 output disabled, no clock on MCO1 */
#define RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_0 /*!< SYSCLK selection as MCO1 source */
#define RCC_MCO1SOURCE_HSI10M RCC_CFGR_MCOSEL_1
#define RCC_MCO1SOURCE_HSI (RCC_CFGR_MCOSEL_0| RCC_CFGR_MCOSEL_1) /*!< HSI selection as MCO1 source */
#define RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_2 /*!< HSE selection as MCO1 source */
#if defined(RCC_PLL_SUPPORT)
#define RCC_MCO1SOURCE_PLLCLK (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_2) /*!< PLLCLK selection as MCO1 source */
#endif
#define RCC_MCO1SOURCE_LSI (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSI selection as MCO1 source */
#if defined(RCC_LSE_SUPPORT)
#define RCC_MCO1SOURCE_LSE (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSE selection as MCO1 source */
#endif
/**
* @}
*/
/** @defgroup RCC_MCOx_Clock_Prescaler MCO1 Clock Prescaler
* @{
*/
#define RCC_MCODIV_1 0x00000000U /*!< MCO not divided */
#define RCC_MCODIV_2 RCC_CFGR_MCOPRE_0 /*!< MCO divided by 2 */
#define RCC_MCODIV_4 RCC_CFGR_MCOPRE_1 /*!< MCO divided by 4 */
#define RCC_MCODIV_8 (RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 8 */
#define RCC_MCODIV_16 RCC_CFGR_MCOPRE_2 /*!< MCO divided by 16 */
#define RCC_MCODIV_32 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 32 */
#define RCC_MCODIV_64 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1) /*!< MCO divided by 64 */
#define RCC_MCODIV_128 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 128 */
/**
* @}
*/
/** @defgroup RCC_Interrupt Interrupts
* @{
*/
#define RCC_IT_LSIRDY RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */
#if defined(RCC_LSE_SUPPORT)
#define RCC_IT_LSERDY RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */
#define RCC_IT_LSECSS RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */
#endif
#define RCC_IT_HSIRDY RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */
#define RCC_IT_HSERDY RCC_CIFR_HSERDYF /*!< HSE Ready Interrupt flag */
#if defined(RCC_PLL_SUPPORT)
#define RCC_IT_PLLRDY RCC_CIFR_PLLRDYF /*!< PLL Ready Interrupt flag */
#endif
#define RCC_IT_CSS RCC_CIFR_CSSF /*!< HSE Clock Security System Interrupt flag */
/**
* @}
*/
/** @defgroup RCC_Flag Flags
* Elements values convention: XXXYYYYYb
* - YYYYY : Flag position in the register
* - XXX : Register index
* - 001: CR register
* - 010: BDCR register
* - 011: CSR register
* @{
*/
/* Flags in the CR register */
#define RCC_FLAG_HSIRDY ((CR_REG_INDEX << 5U) | RCC_CR_HSIRDY_Pos) /*!< HSI Ready flag */
#define RCC_FLAG_HSERDY ((CR_REG_INDEX << 5U) | RCC_CR_HSERDY_Pos) /*!< HSE Ready flag */
#if defined(RCC_PLL_SUPPORT)
#define RCC_FLAG_PLLRDY ((CR_REG_INDEX << 5U) | RCC_CR_PLLRDY_Pos) /*!< PLL Ready flag */
#endif
#if defined(RCC_LSE_SUPPORT)
/* Flags in the BDCR register */
#define RCC_FLAG_LSERDY ((BDCR_REG_INDEX << 5U) | RCC_BDCR_LSERDY_Pos) /*!< LSE Ready flag */
#endif
/* Flags in the CSR register */
#define RCC_FLAG_LSIRDY ((CSR_REG_INDEX << 5U) | RCC_CSR_LSIRDY_Pos) /*!< LSI Ready flag */
#define RCC_FLAG_OBLRST ((CSR_REG_INDEX << 5U) | RCC_CSR_OBLRSTF_Pos) /*!< Option Byte Loader reset flag */
#define RCC_FLAG_PINRST ((CSR_REG_INDEX << 5U) | RCC_CSR_PINRSTF_Pos) /*!< PIN reset flag */
#define RCC_FLAG_PWRRST ((CSR_REG_INDEX << 5U) | RCC_CSR_PWRRSTF_Pos) /*!< BOR or POR/PDR reset flag */
#define RCC_FLAG_SFTRST ((CSR_REG_INDEX << 5U) | RCC_CSR_SFTRSTF_Pos) /*!< Software Reset flag */
#define RCC_FLAG_IWDGRST ((CSR_REG_INDEX << 5U) | RCC_CSR_IWDGRSTF_Pos) /*!< Independent Watchdog reset flag */
#if defined(WWDG)
#define RCC_FLAG_WWDGRST ((CSR_REG_INDEX << 5U) | RCC_CSR_WWDGRSTF_Pos) /*!< Window watchdog reset flag */
#endif
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup RCC_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_AHB_Peripheral_Clock_Enable_Disable AHB Peripheral Clock Enable Disable
* @brief Enable or disable the AHB peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if (defined(DMA) || defined(DMA1))
#define __HAL_RCC_DMA_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#define __HAL_RCC_FLASH_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_SRAM_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_CRC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \
UNUSED(tmpreg); \
} while(0U)
#if (defined(DMA) || defined(DMA1))
#define __HAL_RCC_DMA_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN)
#endif
#define __HAL_RCC_FLASH_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN)
#define __HAL_RCC_SRAM_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN)
#define __HAL_RCC_CRC_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Enable_Disable IOPORT Clock Enable Disable
* @brief Enable or disable the IO Ports clock.
* @note After reset, the IO ports clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOF_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOA_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN)
#define __HAL_RCC_GPIOB_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN)
#define __HAL_RCC_GPIOF_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN)
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Enable_Disable APB1 Peripheral Clock Enable Disable
* @brief Enable or disable the APB1 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if defined(TIM3)
#define __HAL_RCC_TIM3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#if defined(RTC)
#define __HAL_RCC_RTCAPB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#if defined(WWDG)
#define __HAL_RCC_WWDG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#if defined(USART2)
#define __HAL_RCC_USART2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#define __HAL_RCC_I2C_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_DBGMCU_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_PWR_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_LPTIM_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN); \
UNUSED(tmpreg); \
} while(0U)
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Enable_Disable APB2 Peripheral Clock Enable Disable
* @brief Enable or disable the APB2 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_TIM1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_SPI1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_USART1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(TIM14)
#define __HAL_RCC_TIM14_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#define __HAL_RCC_TIM16_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(TIM17)
#define __HAL_RCC_TIM17_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#define __HAL_RCC_ADC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(COMP1)
#define __HAL_RCC_COMP1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#if defined(COMP2)
#define __HAL_RCC_COMP2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#if defined(LED)
#define __HAL_RCC_LED_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN); \
UNUSED(tmpreg); \
} while(0U)
#endif
#if defined(TIM3)
#define __HAL_RCC_TIM3_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN)
#endif
#if defined(RTC)
#define __HAL_RCC_RTCAPB_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN)
#endif
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN)
#endif
#if defined(USART2)
#define __HAL_RCC_USART2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN)
#endif
#define __HAL_RCC_I2C_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN)
#define __HAL_RCC_DBGMCU_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN)
#define __HAL_RCC_PWR_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_PWREN)
#define __HAL_RCC_LPTIM_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN)
#define __HAL_RCC_SYSCFG_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN)
#define __HAL_RCC_TIM1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN)
#define __HAL_RCC_SPI1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN)
#define __HAL_RCC_USART1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN)
#if defined(TIM14)
#define __HAL_RCC_TIM14_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN)
#endif
#define __HAL_RCC_TIM16_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN)
#if defined(TIM17)
#define __HAL_RCC_TIM17_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN)
#endif
#define __HAL_RCC_ADC_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN)
#if defined(COMP1)
#define __HAL_RCC_COMP1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN)
#endif
#if defined(COMP2)
#define __HAL_RCC_COMP2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN)
#endif
#if defined(LED)
#define __HAL_RCC_LED_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN)
#endif
/**
* @}
*/
/** @defgroup RCC_AHB_Peripheral_Clock_Enabled_Disabled_Status AHB Peripheral Clock Enabled or Disabled Status
* @brief Check whether the AHB peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if (defined(DMA) || defined(DMA1))
#define __HAL_RCC_DMA_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN) != RESET)
#endif
#define __HAL_RCC_FLASH_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) != RESET)
#define __HAL_RCC_CRC_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) != RESET)
#if (defined(DMA) || defined(DMA1))
#define __HAL_RCC_DMA_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMAEN) == RESET)
#endif
#define __HAL_RCC_FLASH_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) == RESET)
#define __HAL_RCC_CRC_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Enabled_Disabled_Status IOPORT Clock Enabled or Disabled Status
* @brief Check whether the IO Port clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) != RESET)
#define __HAL_RCC_GPIOB_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) != RESET)
#define __HAL_RCC_GPIOF_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN) != RESET)
#define __HAL_RCC_GPIOA_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) == RESET)
#define __HAL_RCC_GPIOB_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) == RESET)
#define __HAL_RCC_GPIOF_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Enabled_Disabled_Status APB1 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB1 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if defined(TIM3)
#define __HAL_RCC_TIM3_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN) != 0U)
#endif
#if defined(RTC)
#define __HAL_RCC_RTCAPB_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN) != 0U)
#endif
#if defined(WWDG)
#define __HAL_RCC_WWDG_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN) != 0U)
#endif
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN) != 0U)
#endif
#if defined(USART2)
#define __HAL_RCC_USART2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN) != 0U)
#endif
#define __HAL_RCC_I2C_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN) != 0U)
#define __HAL_RCC_DBGMCU_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) != 0U)
#define __HAL_RCC_PWR_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) != 0U)
#define __HAL_RCC_LPTIM_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN) != 0U)
#if defined(TIM3)
#define __HAL_RCC_TIM3_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN) == 0U)
#endif
#if defined(RTC)
#define __HAL_RCC_RTCAPB_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN) == 0U)
#endif
#if defined(WWDG)
#define __HAL_RCC_WWDG_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN) == 0U)
#endif
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN) == 0U)
#endif
#if defined(USART2)
#define __HAL_RCC_USART2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN) == 0U)
#endif
#define __HAL_RCC_I2C1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2CEN) == 0U)
#define __HAL_RCC_DBGMCU_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) == 0U)
#define __HAL_RCC_PWR_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) == 0U)
#define __HAL_RCC_LPTIM_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIMEN) == 0U)
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Enabled_Disabled_Status APB2 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB2 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) != 0U)
#define __HAL_RCC_TIM1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) != 0U)
#define __HAL_RCC_SPI1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) != 0U)
#define __HAL_RCC_USART1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) != 0U)
#if defined(TIM14)
#define __HAL_RCC_TIM14_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) != 0U)
#endif
#define __HAL_RCC_TIM16_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN) != 0U)
#if defined(TIM17)
#define __HAL_RCC_TIM17_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN) != 0U)
#endif
#define __HAL_RCC_ADC_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) != 0U)
#if defined(COMP1)
#define __HAL_RCC_COMP1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN) != 0U)
#endif
#if defined(COMP2)
#define __HAL_RCC_COMP2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN) != 0U)
#endif
#if defined(LED)
#define __HAL_RCC_LED_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN) != 0U)
#endif
#define __HAL_RCC_SYSCFG_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) == 0U)
#define __HAL_RCC_TIM1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) == 0U)
#define __HAL_RCC_SPI1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) == 0U)
#define __HAL_RCC_USART1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) == 0U)
#if defined(TIM14)
#define __HAL_RCC_TIM14_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) == 0U)
#endif
#define __HAL_RCC_TIM16_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN) == 0U)
#if defined(TIM17)
#define __HAL_RCC_TIM17_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN) == 0U)
#endif
#define __HAL_RCC_ADC_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) == 0U)
#if defined(COMP1)
#define __HAL_RCC_COMP1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP1EN) == 0U)
#endif
#if defined(COMP2)
#define __HAL_RCC_COMP2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_COMP2EN) == 0U)
#endif
#if defined(LED)
#define __HAL_RCC_LED_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_LEDEN) == 0U)
#endif
/**
* @}
*/
/** @defgroup RCC_AHB_Force_Release_Reset AHB Peripheral Force Release Reset
* @brief Force or release AHB1 peripheral reset.
* @{
*/
#define __HAL_RCC_AHB_FORCE_RESET() WRITE_REG(RCC->AHBRSTR, 0xFFFFFFFFU)
#if (defined(DMA) || defined(DMA1))
#define __HAL_RCC_DMA_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMARST)
#endif
#define __HAL_RCC_FLASH_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST)
#define __HAL_RCC_CRC_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST)
#define __HAL_RCC_AHB_RELEASE_RESET() WRITE_REG(RCC->AHBRSTR, 0x00000000U)
#if (defined(DMA) || defined(DMA1))
#define __HAL_RCC_DMA_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMARST)
#endif
#define __HAL_RCC_FLASH_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST)
#define __HAL_RCC_CRC_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Force_Release_Reset IOPORT Force Release Reset
* @brief Force or release IO Port reset.
* @{
*/
#define __HAL_RCC_IOP_FORCE_RESET() WRITE_REG(RCC->IOPRSTR, 0xFFFFFFFFU)
#define __HAL_RCC_GPIOA_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST)
#define __HAL_RCC_GPIOB_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST)
#define __HAL_RCC_GPIOF_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOFRST)
#define __HAL_RCC_IOP_RELEASE_RESET() WRITE_REG(RCC->IOPRSTR, 0x00000000U)
#define __HAL_RCC_GPIOA_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST)
#define __HAL_RCC_GPIOB_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST)
#define __HAL_RCC_GPIOF_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOFRST)
/**
* @}
*/
/** @defgroup RCC_APB1_Force_Release_Reset APB1 Peripheral Force Release Reset
* @brief Force or release APB1 peripheral reset.
* @{
*/
#define __HAL_RCC_APB1_FORCE_RESET() WRITE_REG(RCC->APBRSTR1, 0xFFFFFFFFU)
#if defined(TIM3)
#define __HAL_RCC_TIM3_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM3RST)
#endif
#if defined(SPI2)
#define __HAL_RCC_SPI2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI2RST)
#endif
#if defined(USART2)
#define __HAL_RCC_USART2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART2RST)
#endif
#define __HAL_RCC_I2C_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2CRST)
#define __HAL_RCC_DBGMCU_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST)
#define __HAL_RCC_PWR_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST)
#define __HAL_RCC_LPTIM_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIMRST)
#define __HAL_RCC_APB1_RELEASE_RESET() WRITE_REG(RCC->APBRSTR1, 0x00000000U)
#if defined(TIM3)
#define __HAL_RCC_TIM3_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM3RST)
#endif
#if defined(SPI2)
#define __HAL_RCC_SPI2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI2RST)
#endif
#if defined(USART2)
#define __HAL_RCC_USART2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART2RST)
#endif
#define __HAL_RCC_I2C_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2CRST)
#define __HAL_RCC_DBGMCU_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST)
#define __HAL_RCC_PWR_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST)
#define __HAL_RCC_LPTIM_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIMRST)
/**
* @}
*/
/** @defgroup RCC_APB2_Force_Release_Reset APB2 Peripheral Force Release Reset
* @brief Force or release APB2 peripheral reset.
* @{
*/
#define __HAL_RCC_APB2_FORCE_RESET() WRITE_REG(RCC->APBRSTR2, 0xFFFFFFFFU)
#define __HAL_RCC_SYSCFG_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST)
#define __HAL_RCC_TIM1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST)
#define __HAL_RCC_SPI1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST)
#define __HAL_RCC_USART1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST)
#if defined(TIM14)
#define __HAL_RCC_TIM14_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST)
#endif
#define __HAL_RCC_TIM16_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM16RST)
#if defined(TIM17)
#define __HAL_RCC_TIM17_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM17RST)
#endif
#define __HAL_RCC_ADC_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST)
#if defined(COMP1)
#define __HAL_RCC_COMP1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP1RST)
#endif
#if defined(COMP2)
#define __HAL_RCC_COMP2_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP2RST)
#endif
#if defined(LED)
#define __HAL_RCC_LED_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_LEDRST)
#endif
#define __HAL_RCC_APB2_RELEASE_RESET() WRITE_REG(RCC->APBRSTR2, 0x00U)
#define __HAL_RCC_SYSCFG_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST)
#define __HAL_RCC_TIM1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST)
#define __HAL_RCC_SPI1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST)
#define __HAL_RCC_USART1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST)
#if defined(TIM14)
#define __HAL_RCC_TIM14_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST)
#endif
#define __HAL_RCC_TIM16_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM16RST)
#if defined(TIM17)
#define __HAL_RCC_TIM17_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM17RST)
#endif
#define __HAL_RCC_ADC_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST)
#if defined(COMP1)
#define __HAL_RCC_COMP1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP1RST)
#endif
#if defined(COMP2)
#define __HAL_RCC_COMP2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_COMP2RST)
#endif
#if defined(LED)
#define __HAL_RCC_LED_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_LEDRST)
#endif
/**
* @}
*/
/** @defgroup RCC_Backup_Domain_Reset RCC Backup Domain Reset
* @{
*/
/** @brief Macros to force or release the Backup domain reset.
* @note This function resets the RTC peripheral (including the backup registers)
* and the RTC clock source selection in RCC_BDCR register.
* @retval None
*/
#define __HAL_RCC_BACKUPRESET_FORCE() SET_BIT(RCC->BDCR, RCC_BDCR_BDRST)
#define __HAL_RCC_BACKUPRESET_RELEASE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST)
/**
* @}
*/
#if defined(RTC)
/** @defgroup RCC_RTC_Clock_Configuration RCC RTC Clock Configuration
* @{
*/
/** @brief Macros to enable or disable the RTC clock.
* @note As the RTC is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the RTC
* (to be done once after reset).
* @note These macros must be used after the RTC clock source was selected.
* @retval None
*/
#define __HAL_RCC_RTC_ENABLE() SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN)
#define __HAL_RCC_RTC_DISABLE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN)
/**
* @}
*/
#endif
/** @defgroup RCC_Clock_Configuration RCC Clock Configuration
* @{
*/
/** @brief Macros to enable the Internal High Speed oscillator (HSI).
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
* It is used (enabled by hardware) as system clock source after startup
* from Reset, wakeup from STOP and STANDBY mode, or in case of failure
* of the HSE used directly or indirectly as system clock (if the Clock
* Security System CSS is enabled).
* @note After enabling the HSI, the application software should wait on HSIRDY
* flag to be set indicating that HSI clock is stable and can be used as
* system clock source.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSION)
/** @brief Macros to disable the Internal High Speed oscillator (HSI).
* @note HSI can not be stopped if it is used as system clock source. In this case,
* you have to select another source of the system clock then stop the HSI.
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
* clock cycles.
* @retval None
*/
#define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION)
/** @brief Macro to adjust the Internal High Speed oscillator (HSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal HSI RC.
* @param __HSICALIBRATIONVALUE__ specifies the calibration trimming value
* (default is RCC_HSICALIBRATION_DEFAULT).
* This parameter must be a number between 0 and 127.
* @retval None
*/
#define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICALIBRATIONVALUE__) \
MODIFY_REG(RCC->ICSCR, (RCC_ICSCR_HSI_FS_Msk|RCC_ICSCR_HSI_TRIM), (uint32_t)(__HSICALIBRATIONVALUE__) << RCC_ICSCR_HSI_TRIM_Pos)
/** @brief Macro to configure the HSISYS clock.
* @param __HSIDIV__ specifies the HSI division factor.
* This parameter can be one of the following values:
* @arg @ref RCC_HSI_DIV1 HSI clock source is divided by 1
* @arg @ref RCC_HSI_DIV2 HSI clock source is divided by 2
* @arg @ref RCC_HSI_DIV4 HSI clock source is divided by 4
* @arg @ref RCC_HSI_DIV8 HSI clock source is divided by 8
* @arg @ref RCC_HSI_DIV16 HSI clock source is divided by 16
* @arg @ref RCC_HSI_DIV32 HSI clock source is divided by 32
* @arg @ref RCC_HSI_DIV64 HSI clock source is divided by 64
* @arg @ref RCC_HSI_DIV128 HSI clock source is divided by 128
*/
#define __HAL_RCC_HSI_CONFIG(__HSIDIV__) \
MODIFY_REG(RCC->CR, RCC_CR_HSIDIV, (__HSIDIV__))
/** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI).
* @note After enabling the LSI, the application software should wait on
* LSIRDY flag to be set indicating that LSI clock is stable and can
* be used to clock the IWDG and/or the RTC.
* @note LSI can not be disabled if the IWDG is running.
* @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
* clock cycles.
* @retval None
*/
#define __HAL_RCC_LSI_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_LSION)
#define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_LSION)
/**
* @brief Macro to configure the External High Speed oscillator (HSE).
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
* supported by this macro. User should request a transition to HSE Off
* first and then HSE On or HSE Bypass.
* @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
* software should wait on HSERDY flag to be set indicating that HSE clock
* is stable and can be used to clock the PLL and/or system clock.
* @note HSE state can not be changed if it is used directly or through the
* PLL as system clock. In this case, you have to select another source
* of the system clock then change the HSE state (ex. disable it).
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
* @note This function reset the CSSON bit, so if the clock security system(CSS)
* was previously enabled you have to enable it again after calling this
* function.
* @param __STATE__ specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg @ref RCC_HSE_OFF Turn OFF the HSE oscillator, HSERDY flag goes low after
* 6 HSE oscillator clock cycles.
* @arg @ref RCC_HSE_ON Turn ON the HSE oscillator.
* @arg @ref RCC_HSE_BYPASS HSE oscillator bypassed with external clock.
* @retval None
*/
#define __HAL_RCC_HSE_CONFIG(__STATE__) \
do { \
if((__STATE__) == RCC_HSE_ON) \
{ \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else if((__STATE__) == RCC_HSE_BYPASS) \
{ \
SET_BIT(RCC->CR, RCC_CR_HSEBYP); \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \
} \
} while(0U)
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Macro to configure the External Low Speed oscillator (LSE).
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
* supported by this macro. User should request a transition to LSE Off
* first and then LSE On or LSE Bypass.
* @note As the LSE is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the LSE
* (to be done once after reset).
* @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application
* software should wait on LSERDY flag to be set indicating that LSE clock
* is stable and can be used to clock the RTC.
* @param __STATE__ specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg @ref RCC_LSE_OFF Turn OFF the LSE oscillator, LSERDY flag goes low after
* 6 LSE oscillator clock cycles.
* @arg @ref RCC_LSE_ON Turn ON the LSE oscillator.
* @arg @ref RCC_LSE_BYPASS LSE oscillator bypassed with external clock.
* @retval None
*/
#define __HAL_RCC_LSE_CONFIG(__STATE__) \
do { \
if((__STATE__) == RCC_LSE_ON) \
{ \
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
} \
else if((__STATE__) == RCC_LSE_BYPASS) \
{ \
SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \
} \
} while(0U)
#endif
/**
* @}
*/
#if defined(RTC)
/** @addtogroup RCC_RTC_Clock_Configuration
* @{
*/
/** @brief Macros to configure the RTC clock (RTCCLK).
* @note As the RTC clock configuration bits are in the Backup domain and write
* access is denied to this domain after reset, you have to enable write
* access using the Power Backup Access macro before to configure
* the RTC clock source (to be done once after reset).
* @note Once the RTC clock is configured it cannot be changed unless the
* Backup domain is reset using __HAL_RCC_BACKUPRESET_FORCE() macro, or by
* a Power On Reset (POR).
*
* @param __RTC_CLKSOURCE__ specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_HSE_DIV128 HSE clock divided by 128 selected
*
* @note If the LSE or LSI is used as RTC clock source, the RTC continues to
* work in STOP and STANDBY modes, and can be used as wakeup source.
* However, when the HSE clock is used as RTC clock source, the RTC
* cannot be used in STOP and STANDBY modes.
* @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
* RTC clock source).
* @retval None
*/
#define __HAL_RCC_RTC_CONFIG(__RTC_CLKSOURCE__) \
MODIFY_REG( RCC->BDCR, RCC_BDCR_RTCSEL, (__RTC_CLKSOURCE__))
/** @brief Macro to get the RTC clock source.
* @retval The returned value can be one of the following:
* @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_HSE_DIV128 HSE clock divided by 128 selected
*/
#define __HAL_RCC_GET_RTC_SOURCE() ((uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL)))
/** @brief Macros to enable or disable the main PLL.
* @note After enabling the main PLL, the application software should wait on
* PLLRDY flag to be set indicating that PLL clock is stable and can
* be used as system clock source.
* @note The main PLL can not be disabled if it is used as system clock source
* @note The main PLL is disabled by hardware when entering STOP and STANDBY modes.
* @retval None
*/
/**
* @}
*/
#endif
/** @addtogroup RCC_Clock_Configuration
* @{
*/
#if defined(RCC_PLL_SUPPORT)
#define __HAL_RCC_PLL_ENABLE() SET_BIT(RCC->CR, RCC_CR_PLLON)
#define __HAL_RCC_PLL_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_PLLON)
/** @brief Macro to configure the PLL clock source.
* @note This function must be used only when the main PLL is disabled.
* @param __PLLSOURCE__ specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_PLLSOURCE_HSI HSI oscillator clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_HSE HSE oscillator clock selected as PLL clock entry
* @retval None
*
*/
#define __HAL_RCC_PLL_PLLSOURCE_CONFIG(__PLLSOURCE__) \
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (__PLLSOURCE__))
/** @brief Macro to get the oscillator used as PLL clock source.
* @retval The oscillator used as PLL clock source. The returned value can be one
* of the following:
* @arg @ref RCC_PLLSOURCE_HSI HSI oscillator is used as PLL clock source.
* @arg @ref RCC_PLLSOURCE_HSE HSE oscillator is used as PLL clock source.
*/
#define __HAL_RCC_GET_PLL_OSCSOURCE() ((uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC))
#endif
/**
* @brief Macro to configure the system clock source.
* @param __SYSCLKSOURCE__ specifies the system clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_SYSCLKSOURCE_HSI HSI oscillator is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_HSE HSE oscillator is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_PLLCLK PLL output is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_LSI LSI oscillator is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_LSE LSE oscillator is used as system clock source.
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @retval None
*/
#define __HAL_RCC_SYSCLK_CONFIG(__SYSCLKSOURCE__) \
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__SYSCLKSOURCE__))
/** @brief Macro to get the clock source used as system clock.
* @retval The clock source used as system clock. The returned value can be one
* of the following:
* @arg @ref RCC_SYSCLKSOURCE_STATUS_HSI HSI used as system clock.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_HSE HSE used as system clock.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_PLLCLK PLL used as system clock.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_LSI LSI used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_LSE LSE used as system clock source.
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
*/
#define __HAL_RCC_GET_SYSCLK_SOURCE() (RCC->CFGR & RCC_CFGR_SWS)
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Macro to configure the External Low Speed oscillator (LSE) drive capability.
* @note As the LSE is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the LSE
* (to be done once after reset).
* @param __LSEDRIVE__ specifies the new state of the LSE drive capability.
* This parameter can be one of the following values:
* @arg @ref RCC_LSEDRIVE_LOW LSE oscillator low drive capability.
* @arg @ref RCC_LSEDRIVE_MEDIUM LSE oscillator medium low drive capability.
* @arg @ref RCC_LSEDRIVE_HIGH LSE oscillator high drive capability.
* @retval None
*/
#define __HAL_RCC_LSEDRIVE_CONFIG(__LSEDRIVE__) \
MODIFY_REG(RCC->ECSCR, RCC_ECSCR_LSE_DRIVER, (uint32_t)(__LSEDRIVE__))
#endif
/** @brief Macro to configure the MCO clock.
* @param __MCOCLKSOURCE__ specifies the MCO clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled
* @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee
* @arg @ref RCC_MCO1SOURCE_PLLCLK Main PLL clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @param __MCODIV__ specifies the MCO clock prescaler.
* This parameter can be one of the following values:
* @arg @ref RCC_MCODIV_1 MCO clock source is divided by 1
* @arg @ref RCC_MCODIV_2 MCO clock source is divided by 2
* @arg @ref RCC_MCODIV_4 MCO clock source is divided by 4
* @arg @ref RCC_MCODIV_8 MCO clock source is divided by 8
* @arg @ref RCC_MCODIV_16 MCO clock source is divided by 16
* @arg @ref RCC_MCODIV_32 MCO clock source is divided by 32
* @arg @ref RCC_MCODIV_64 MCO clock source is divided by 64
* @arg @ref RCC_MCODIV_128 MCO clock source is divided by 128
*/
#define __HAL_RCC_MCO1_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), ((__MCOCLKSOURCE__) | (__MCODIV__)))
/**
* @}
*/
/** @defgroup RCC_Flags_Interrupts_Management Flags Interrupts Management
* @brief macros to manage the specified RCC Flags and interrupts.
* @{
*/
/** @brief Enable RCC interrupt.
* @param __INTERRUPT__ specifies the RCC interrupt sources to be enabled.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @retval None
*/
#define __HAL_RCC_ENABLE_IT(__INTERRUPT__) SET_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Disable RCC interrupt.
* @param __INTERRUPT__ specifies the RCC interrupt sources to be disabled.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @retval None
*/
#define __HAL_RCC_DISABLE_IT(__INTERRUPT__) CLEAR_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Clear RCC interrupt pending bits.
* @param __INTERRUPT__ specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @arg @ref RCC_IT_CSS HSE Clock security system interrupt
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @retval None
*/
#define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (RCC->CICR = (__INTERRUPT__))
/** @brief Check whether the RCC interrupt has occurred or not.
* @param __INTERRUPT__ specifies the RCC interrupt source to check.
* This parameter can be one of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @arg @ref RCC_IT_CSS HSE Clock security system interrupt
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @retval The new state of __INTERRUPT__ (TRUE or FALSE).
*/
#define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIFR & (__INTERRUPT__)) == (__INTERRUPT__))
/** @brief Set RMVF bit to clear the reset flags.
* The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PWRRST,
* RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST.
* @note Depending on the device and software package, some flag bits may not be available.
* Refer to the device data sheet for flag bit availability.
* @retval None
*/
#define __HAL_RCC_CLEAR_RESET_FLAGS() (RCC->CSR |= RCC_CSR_RMVF)
/** @brief Check whether the selected RCC flag is set or not.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg @ref RCC_FLAG_HSIRDY HSI oscillator clock ready
* @arg @ref RCC_FLAG_HSERDY HSE oscillator clock ready
* @arg @ref RCC_FLAG_PLLRDY Main PLL clock ready
* @arg @ref RCC_FLAG_LSERDY LSE oscillator clock ready
* @arg @ref RCC_FLAG_LSIRDY LSI oscillator clock ready
* @arg @ref RCC_FLAG_PWRRST BOR or POR/PDR reset
* @arg @ref RCC_FLAG_OBLRST OBLRST reset
* @arg @ref RCC_FLAG_PINRST Pin reset
* @arg @ref RCC_FLAG_SFTRST Software reset
* @arg @ref RCC_FLAG_IWDGRST Independent Watchdog reset
* @arg @ref RCC_FLAG_WWDGRST Window Watchdog reset
* @note Depending on the device and software package, some flag bits may not be available.
* Refer to the device data sheet for flag bit availability.
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_RCC_GET_FLAG(__FLAG__) (((((((__FLAG__) >> 5U) == CR_REG_INDEX) ? RCC->CR : \
((((__FLAG__) >> 5U) == BDCR_REG_INDEX) ? RCC->BDCR : \
((((__FLAG__) >> 5U) == CSR_REG_INDEX) ? RCC->CSR : RCC->CIFR))) & \
(1U << ((__FLAG__) & RCC_FLAG_MASK))) != RESET) \
? 1U : 0U)
/**
* @}
*/
/**
* @}
*/
/* Include RCC HAL Extended module */
#include "py32f0xx_hal_rcc_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RCC_Exported_Functions
* @{
*/
/** @addtogroup RCC_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions ******************************/
HAL_StatusTypeDef HAL_RCC_DeInit(void);
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency);
/**
* @}
*/
/** @addtogroup RCC_Exported_Functions_Group2
* @{
*/
/* Peripheral Control functions ************************************************/
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv);
void HAL_RCC_EnableCSS(void);
#if defined(RCC_LSE_SUPPORT)
void HAL_RCC_EnableLSECSS(void);
void HAL_RCC_DisableLSECSS(void);
void HAL_RCC_LSECSSCallback(void);
#endif
uint32_t HAL_RCC_GetSysClockFreq(void);
uint32_t HAL_RCC_GetHCLKFreq(void);
uint32_t HAL_RCC_GetPCLK1Freq(void);
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency);
/* LSE & HSE CSS NMI IRQ handler */
void HAL_RCC_NMI_IRQHandler(void);
/* User Callbacks in non blocking mode (IT mode) */
void HAL_RCC_CSSCallback(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __PY32F0xx_HAL_RCC_H */
/************************ (C) COPYRIGHT Puya *****END OF FILE****/